Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Opt Lett ; 43(3): 367-370, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29400861

RESUMEN

The transfer of angular momentum between a quadrupole emitter and a dipole acceptor is investigated theoretically. Vector spherical harmonics are used to describe the angular part of the field of the mediating photon. Analytical results are presented for predicting angular momentum transfer between the emitter and absorber within a quantum electrodynamical framework. We interpret the allowability of such a process, which appears to violate conservation of angular momentum, in terms of the breakdown of the isotropy of space at the point of photon absorption (detection). That is, collapse of the wavefunction results in loss of all angular momentum information. This is consistent with Noether's Theorem and demystifies some common misconceptions about the nature of the photon. The results have implications for interpreting the detection of photons from multipole sources and offers insight into limits on information that can be extracted from quantum measurements in photonic systems.

2.
J Chem Phys ; 145(7): 074107, 2016 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-27544087

RESUMEN

In this work, we derive the well-established expression for the quantum amplitude associated with the resonance energy transfer (RET) process between a pair of molecules that are beyond wavefunction overlap. The novelty of this work is that the field of the mediating photon is described in terms of a spherical wave rather than a plane wave. The angular components of the field are constructed in terms of vector spherical harmonics while Hankel functions are used to define the radial component. This approach alleviates the problem of having to select physically correct solution from non-physical solutions, which seems to be inherent in plane wave derivations. The spherical coordinate system allows one to easily decompose the photon's fields into longitudinal and transverse components and offers a natural way to analyse near-, intermediate-, and far-zone RET within the context of the relative orientation of the transition dipole moments for the two molecules.

3.
Chemistry ; 13(8): 2266-76, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17163549

RESUMEN

Muon Spin Relaxation and Avoided Level Crossing (ALC) measurements of ferrocene are reported. The main features observed are five high field resonances in the ALC spectrum at about 3.26, 2.44, 2.04, 1.19 and 1.17 T, for the low-temperature phase at 18 K. The high-temperature phase at 295 K shows that only the last feature shifted down to about 0.49 T and a muon spin relaxation peak at about 0.106 T which approaches zero field when reaching the phase transition temperature of 164 K. A model involving three muoniated radicals, two with muonium addition to the cyclopentadienyl ring and the other to the metal atom, is postulated to rationalise these observations. A theoretical treatment involving spin-orbit coupling is found to be required to understand the Fe-Mu adduct, where an interesting interplay between the ferrocene ring dynamics and the spin-orbit coupling of the unpaired electron is shown to be important. The limiting temperature above which the full effect of spin-orbit interaction is observable in the muSR spectra of ferrocene was estimated to be 584 K. Correlation time for the ring rotation dynamics of the Fe-Mu radical at this temperature is 3.2 ps. Estimated electron g values and the changes in zero-field splittings for this temperature range are also reported.


Asunto(s)
Compuestos Ferrosos/química , Mesones , Compuestos Organometálicos/química , Marcadores de Spin , Metalocenos , Temperatura
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda