Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Bioorg Med Chem ; 18(15): 5483-8, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20621491

RESUMEN

The peptide hormone ghrelin, which is the natural ligand of the membrane-bound growth hormone secretagogue receptor (GHS-R), regulates overall body and cell growth, energy homeostasis, carbohydrate, protein and lipid metabolism and water electrolyte balance. It contains an O-acyl linked octanoyl group on Ser3 and is the only peptide known to contain such a modification. Using solution state NMR spectroscopy and ultrafiltration we found that human ghrelin binds to membrane-mimetic environments via its octanoyl group as well as the aromatic moiety of Phe4. Relaxation enhancements in a paramagnetic environment reveal that both the octanoyl group on Ser3 and the aromatic group on Phe4 are inserted deep into the hydrophobic core of phosphocholine assemblies while the remaining peptide is freely mobile in solution. In contrast, no binding was observed for des-octanoyl ghrelin. Thus, the octanoyl chain, together with the Phe4 aromatic group of ghrelin, functions as a membrane anchor. Our results are in parallel with the previous finding that a bulky hydrophobic group on Ser3 and Phe4 of ghrelin are necessary for its function and thus indicate that membrane-binding is essential for ghrelin function.


Asunto(s)
Ghrelina/metabolismo , Octanos/química , Fenilalanina/química , Membrana Celular/metabolismo , Ghrelina/química , Humanos , Resonancia Magnética Nuclear Biomolecular , Receptores de Ghrelina/metabolismo , Serina/química
2.
J Phys Chem B ; 114(13): 4717-24, 2010 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-20225847

RESUMEN

The interaction with biological membranes is of functional importance for many peptides and proteins. Structural studies on such membrane-bound biomacromolecules are often carried out in solutions containing small membrane-mimetic assemblies of detergent molecules. To investigate the influence of the hydrophobic chain length on the structure, diffusional and dynamical behavior of a peptide bound to micelles, we studied the binding of three peptides to n-phosphocholines with n ranging from 8 to 16. The peptides studied are the 15 residue antimicrobial peptide CM15, the 25-residue transmembrane helix 7 of yeast V-ATPase (TM7), and the 35-residue bacterial toxin LdrD. To keep the dimension of the peptide-membrane-mimetic assembly small, micelles are typically used when studying membrane-bound peptides and proteins, for example, by solution NMR spectroscopy. Since they are readily available in deuterated form most often sodium-dodecylsulfate (SDS) and dodecylphosphocholine (DPC) are used as the micelle-forming detergent. Using NMR, CD, and SAXS, we found that all phosphocholines studied form spherical micelles in the presence and absence of small bound peptides and the diameters of the micelles are basically unchanged upon peptide binding. The size of the peptide relative to the micelle determines to what extent the secondary structure can form. For small peptides (up to approximately 25 residues) the use of shorter chain phosphocholines is recommended for solution NMR studies due to the favorable spectral quality and since they are as well-structured as in DPC. In contrast, larger peptides are better structured in micelles formed by detergents with chain lengths longer than DPC.


Asunto(s)
Micelas , Péptidos/química , Fosforilcolina/química , Péptidos Catiónicos Antimicrobianos/química , Toxinas Bacterianas/química , Dicroismo Circular , Proteínas de Escherichia coli/química , Resonancia Magnética Nuclear Biomolecular , Fosforilcolina/análogos & derivados , Estructura Secundaria de Proteína , Dispersión del Ángulo Pequeño
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda