Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Am J Phys Anthropol ; 172(1): 25-40, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32166734

RESUMEN

OBJECTIVES: The aim of this study is to understand whether the shape of three sub-regions of the mandibular corpus (the alveolar arch, corpus at M1 and posterior symphysis) are useful for making taxonomic assessments at the genus and species levels in extant hominids. MATERIALS AND METHODS: We use data taken from 3D surface scans of the mandibular corpus of seven extant hominid taxa: Gorilla gorilla gorilla, Gorilla beringei graueri, Homo sapiens, Pan paniscus, Pan troglodytes schweinfurthii, Pongo abelii, and Pongo pygmaeus pygmaeus to generate four shape variables: alveolar arch shape (AAS), corpus shape at M1 (CSM1 ), posterior symphysis shape at the midline (PSSM), and posterior symphysis shape (PSS). To ascertain how reliable each mandibular shape variable is for assessing taxonomy, we ran canonical discriminant and discriminant function analysis, reporting cross-validated results. RESULTS: Using a combination of three mandibular corpus shape variables, 99% of specimens were classified correctly for genus-level analyses. A maximum of 100% of Pan specimens, 94% of Gorilla specimens and 96% of Pongo specimens were classified correctly at the species level when up to three mandibular shape variables were included in the analyses. When mandibular corpus variables were considered in isolation, posterior symphysis shape yielded the highest overall correct classification results. DISCUSSION: The high taxonomic classification rates at both the genus and species level, using 3D surface data and advanced quantification techniques, show that the shape of the alveolar arch, corpus at M1 and symphysis can distinguish extant hominid taxa. These findings have implications for assessing the taxonomy of extinct hominid specimens which preserve these mandibular sub-regions.


Asunto(s)
Hominidae/clasificación , Mandíbula/anatomía & histología , Animales , Análisis Discriminante , Femenino , Humanos , Masculino , Especificidad de la Especie
2.
Nature ; 547(7662): 162, 2017 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-28703184
3.
Proc Biol Sci ; 284(1856)2017 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-28592675

RESUMEN

The break-up of the supercontinent Pangaea around 180 Ma has left its imprint on the global distribution of species and resulted in vicariance-driven speciation. Here, we test the idea that the molecular clock dates, for the divergences of species whose geographical ranges were divided, should agree with the palaeomagnetic dates for the continental separations. Our analysis of recently available phylogenetic divergence dates of 42 pairs of vertebrate taxa, selected for their reduced ability to disperse, demonstrates that the divergence dates in phylogenetic trees of continent-bound terrestrial and freshwater vertebrates are consistent with the palaeomagnetic dates of continental separation.


Asunto(s)
Evolución Biológica , Filogenia , Vertebrados/clasificación , Animales , Geografía , Fenómenos Geológicos , Filogeografía
4.
J Hum Evol ; 107: 107-133, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28438318

RESUMEN

Although the diminutive Homo floresiensis has been known for a decade, its phylogenetic status remains highly contentious. A broad range of potential explanations for the evolution of this species has been explored. One view is that H. floresiensis is derived from Asian Homo erectus that arrived on Flores and subsequently evolved a smaller body size, perhaps to survive the constrained resources they faced in a new island environment. Fossil remains of H. erectus, well known from Java, have not yet been discovered on Flores. The second hypothesis is that H. floresiensis is directly descended from an early Homo lineage with roots in Africa, such as Homo habilis; the third is that it is Homo sapiens with pathology. We use parsimony and Bayesian phylogenetic methods to test these hypotheses. Our phylogenetic data build upon those characters previously presented in support of these hypotheses by broadening the range of traits to include the crania, mandibles, dentition, and postcrania of Homo and Australopithecus. The new data and analyses support the hypothesis that H. floresiensis is an early Homo lineage: H. floresiensis is sister either to H. habilis alone or to a clade consisting of at least H. habilis, H. erectus, Homo ergaster, and H. sapiens. A close phylogenetic relationship between H. floresiensis and H. erectus or H. sapiens can be rejected; furthermore, most of the traits separating H. floresiensis from H. sapiens are not readily attributable to pathology (e.g., Down syndrome). The results suggest H. floresiensis is a long-surviving relict of an early (>1.75 Ma) hominin lineage and a hitherto unknown migration out of Africa, and not a recent derivative of either H. erectus or H. sapiens.


Asunto(s)
Evolución Biológica , Fósiles/anatomía & histología , Hominidae/anatomía & histología , Cráneo/anatomía & histología , África , Animales , Teorema de Bayes , Femenino , Hominidae/clasificación , Humanos , Islas , Filogenia
5.
Nature ; 538(7625): 371, 2016 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-27762359
7.
J Hered ; 108(2): 107-119, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28173059

RESUMEN

The family Lepilemuridae includes 26 species of sportive lemurs, most of which were recently described. The cryptic morphological differences confounded taxonomy until recent molecular studies; however, some species' boundaries remain uncertain. To better understand the genus Lepilemur, we analyzed 35 complete mitochondrial genomes representing all recognized 26 sportive lemur taxa and estimated divergence dates. With our dataset we recovered 25 reciprocally monophyletic lineages, as well as an admixed clade containing Lepilemur mittermeieri and Lepilemur dorsalis. Using modern distribution data, an ancestral area reconstruction and an ecological vicariance analysis were performed to trace the history of diversification and to test biogeographic hypotheses. We estimated the initial split between the eastern and western Lepilemur clades to have occurred in the Miocene. Divergence of most species occurred from the Pliocene to the Pleistocene. The biogeographic patterns recovered in this study were better addressed with a combinatorial approach including climate, watersheds, and rivers. Generally, current climate and watershed hypotheses performed better for western and eastern clades, while speciation of northern clades was not adequately supported using the ecological factors incorporated in this study. Thus, multiple mechanisms likely contributed to the speciation and distribution patterns in Lepilemur.


Asunto(s)
Especiación Genética , Genoma Mitocondrial , Lemuridae/clasificación , Filogenia , Animales , Clima , ADN Mitocondrial , Madagascar , Modelos Genéticos , Filogeografía
8.
Am J Primatol ; 79(5)2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28073165

RESUMEN

We describe a species of Hoolock gibbon (Primates: Hylobatidae) that is new to science from eastern Myanmar and southwestern China. The genus of hoolock gibbons comprises two previously described living species, the western (Hoolock hoolock) and eastern hoolock (H. leuconedys) gibbons, geographically isolated by the Chindwin River. We assessed the morphological and genetic characteristics of wild animals and museum specimens, and conducted multi-disciplinary analyses using mitochondrial genomic sequences, external morphology, and craniodental characters to evaluate the taxonomic status of the hoolock population in China. The results suggest that hoolocks distributed to the east of the Irrawaddy-Nmai Hka Rivers, which were previously assigned to H. leuconedys, are morphologically and genetically distinct from those to the west of the river, and should be recognized as a new species, the Gaoligong hoolock gibbon or skywalker hoolock gibbon (H. tianxing sp. nov.). We consider that the new species should be categorized as Endangered under IUCN criteria. The discovery of the new species focuses attention on the need for improved conservation of small apes, many of which are in danger of extinction in southern China and Southeast Asia.


Asunto(s)
Distribución Animal , Hylobatidae/clasificación , Animales , China , Citocromos b/genética , Hylobatidae/anatomía & histología , Hylobatidae/genética , Filogenia , Análisis de Secuencia de ADN , Especificidad de la Especie
9.
Front Zool ; 13: 10, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26937245

RESUMEN

BACKGROUND: Titi monkeys, Callicebus, comprise the most species-rich primate genus-34 species are currently recognised, five of them described since 2005. The lack of molecular data for titi monkeys has meant that little is known of their phylogenetic relationships and divergence times. To clarify their evolutionary history, we assembled a large molecular dataset by sequencing 20 nuclear and two mitochondrial loci for 15 species, including representatives from all recognised species groups. Phylogenetic relationships were inferred using concatenated maximum likelihood and Bayesian analyses, allowing us to evaluate the current taxonomic hypothesis for the genus. RESULTS: Our results show four distinct Callicebus clades, for the most part concordant with the currently recognised morphological species-groups-the torquatus group, the personatus group, the donacophilus group, and the moloch group. The cupreus and moloch groups are not monophyletic, and all species of the formerly recognized cupreus group are reassigned to the moloch group. Two of the major divergence events are dated to the Miocene. The torquatus group, the oldest radiation, diverged c. 11 Ma; and the Atlantic forest personatus group split from the ancestor of all donacophilus and moloch species at 9-8 Ma. There is little molecular evidence for the separation of Callicebus caligatus and C. dubius, and we suggest that C. dubius should be considered a junior synonym of a polymorphic C. caligatus. CONCLUSIONS: Considering molecular, morphological and biogeographic evidence, we propose a new genus level taxonomy for titi monkeys: Cheracebus n. gen. in the Orinoco, Negro and upper Amazon basins (torquatus group), Callicebus Thomas, 1903, in the Atlantic Forest (personatus group), and Plecturocebus n. gen. in the Amazon basin and Chaco region (donacophilus and moloch groups).

10.
Am J Phys Anthropol ; 159(Suppl 61): S4-S18, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26808111

RESUMEN

Gorillas living in western central Africa (Gorilla gorilla) are morphologically and genetically distinguishable from those living in eastern central Africa (Gorilla beringei). Genomic analyses show eastern gorillas experienced a significant reduction in population size during the Pleistocene subsequent to geographical isolation from their western counterparts. However, how these results relate more specifically to the recent biogeographical and evolutionary history of eastern gorillas remains poorly understood. Here we show that two rare morphological traits are present in the hands and feet of both eastern gorilla subspecies at strikingly high frequencies (>60% in G. b. graueri; ∼28% in G. b. beringei) in comparison with western gorillas (<1%). The intrageneric distribution of these rare traits suggests that they became common among eastern gorillas after diverging from their western relatives during the early to middle Pleistocene. The extremely high frequencies observed among grauer gorillas-which currently occupy a geographic range more than ten times the size of that of mountain gorillas-imply that grauers originated relatively recently from a small founding population of eastern gorillas. Current paleoenvironmental, geological, and biogeographical evidence supports the hypothesis that a small group of eastern gorillas likely dispersed westward from the Virungas into present-day grauer range in the highlands just north of Lake Kivu, either immediately before or directly after the Younger Dryas interval. We propose that as the lowland forests of central Africa expanded rapidly during the early Holocene, they became connected with the expanding highland forests along the Albertine Rift and enabled the descendants of this small group to widely disperse. The descendant populations significantly expanded their geographic range and population numbers relative to the gorillas of the Virunga Mountains and the Bwindi-Impenetrable Forest, ultimately resulting in the grauer gorilla subspecies recognized today. This founder-effect hypothesis offers some optimism for modern conservation efforts to save critically endangered eastern gorillas from extinction.


Asunto(s)
Evolución Biológica , Gorilla gorilla , África Central , África Oriental , Animales , Ambiente , Femenino , Huesos del Pie/anatomía & histología , Fósiles , Gorilla gorilla/anatomía & histología , Gorilla gorilla/clasificación , Gorilla gorilla/genética , Gorilla gorilla/fisiología , Masculino , Filogenia
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda