RESUMEN
BACKGROUND: Nonalcoholic steatohepatitis (NASH) occupies a substantial proportion of chronic liver disease worldwide, of which pathogenesis needs further research. Recent studies have demonstrated the significant roles of circular RNAs (circRNAs) in NASH, while the function of a novel type of circRNAs, namely mitochondria-encoded circRNAs (mecciRNAs), remains elusive. Therefore, we aimed to investigate their potential to regulate the progression of NASH in this study. METHODS: GSE134146 was used to screen for differentially expressed mecciRNAs in NASH, while GSE46300 was used to identify NASH-related genes. To establish the mecciRNA-miRNA-mRNA networks, circMINE and miRNet databases were used for predicting downstream targets. Then, consensus clustering analysis was used to determine immune subtypes of NASH. Finally, we successfully validated our findings in vitro (LPS-treated hepatic stellate cells [HSCs]) and in vivo (MCD-diet mice) NASH models. RESULTS: We confirmed that circRNomics balance is disrupted in HSCs of NASH, while two mecciRNAs (hsa_circ_0089761 and hsa_circ_0089763) could function as competing for endogenous RNAs (ceRNAs) to regulate fibrosis-related signals. Furthermore, we constructed two ceRNA networks based on mecciRNAs for the first time. Cell and animal NASH models validated our findings that c-MYC and SMAD2/3 were upregulated in HSCs, while THBS1 and p-STAT3 were upregulated in hepatocytes. Moreover, we identified 21 core genes by overlapping the differentially expressed genes (NASH vs. Normal) with mecciRNA-targeted genes. According to their expression profiles, NASH patients could be divided in 2 different clusters, in which proinflammatory signals (TNF and IL-17 pathways) are significantly activated in Cluster 1. CONCLUSION: We successfully established two novel mecciRNA-miRNA-mRNA networks in HSCs and hepatocytes, which were further confirmed by in vitro and in vivo models. Meanwhile, the novel immunotyping model revealed the heterogeneity of NASH, thereby might guiding treatment options. Altogether, our study brought a distinct perspective on the relationship between mecciRNAs and NASH.
Asunto(s)
Hepatitis , MicroARNs , Enfermedad del Hígado Graso no Alcohólico , Animales , Células Estrelladas Hepáticas/metabolismo , Ratones , MicroARNs/genética , Enfermedad del Hígado Graso no Alcohólico/patología , ARN Circular/genética , ARN Mensajero/genética , ARN Mensajero/metabolismoRESUMEN
BACKGROUND: It has been demonstrated that simultaneous resection of both primary colorectal lesion and metastatic hepatic lesion is a safe approach with low mortality and postoperative complication rates. However, there are some controversies over which kind of surgical approach is better. The aim of study was to compare the efficacy and safety of laparoscopic surgeries and open surgeries for simultaneous resection of colorectal cancer (CRC) and synchronous colorectal liver metastasis (SCRLM). METHODS: A systemic search of online database including PubMed, Web of Science, Cochrane Library, and Embase was performed until June 5, 2019. Intraoperative complications, postoperative complications, and long-term outcomes were synthesized by using STATA, version 15.0. Cumulative and single-arm meta-analyses were also conducted. RESULTS: It contained twelve studies with 616 patients (273 vs 343, laparoscopic surgery group and open surgery group, respectively) and manifested latest surgical results for the treatment of CRC and SCRLM. Among patients who underwent laparoscopic surgeries, they had lower rates of postoperative complications (OR = 0.66, 95% CI: 0.46 to 0.96, P = 0.028), less intraoperative blood loss (weight mean difference (WMD) = - 113.31, 95% CI: - 189.03 to - 37.59, P = 0.003), less time in the hospital and recovering after surgeries (WMD = - 2.70, 95% CI: - 3.99 to - 1.40, P = 0.000; WMD = - 3.20, 95% CI: - 5.06 to - 1.34, P = 0.001), but more operating time (WMD = 36.57, 95% CI: 7.80 to 65.35, P = 0.013). Additionally, there were no statistical significance between two kinds of surgical approaches in disease-free survival and overall survival. Moreover, cumulative meta-analysis indicated statistical difference in favor of laparoscopic surgery in terms of morbidity was firstly detected in the 12th study in 2018 (OR = 0.66, 95% CI: 0.46 to 0.96, P = 0.028) as the 95% CI narrowed. CONCLUSION: Compared with open surgeries, laparoscopic surgeries are safer (postoperative complications and intraoperative blood loss) and more effective (length of hospital stay and postoperative stay), and it can be considered as the first option for management of SCRLM in high-volume laparoscopic centers. TRIAL REGISTRATION: CRD42020151176.
Asunto(s)
Neoplasias Colorrectales , Laparoscopía , Neoplasias Hepáticas , Neoplasias Colorrectales/cirugía , Humanos , Tiempo de Internación , Neoplasias Hepáticas/cirugía , Morbilidad , Complicaciones Posoperatorias/epidemiología , Pronóstico , Resultado del TratamientoRESUMEN
BACKGROUND: MASH is a common clinical disease that can lead to advanced liver conditions, but no approved pharmacotherapies are available due to an incomplete understanding of its pathogenesis. Damaged DNA binding protein 1 (DDB1) participates in lipid metabolism. Nevertheless, the function of DDB1 in MASH is unclear. METHODS: Clinical liver samples were obtained from patients with MASH and control individuals by liver biopsy. Hepatocyte-specific Ddb1-knockout mice and liver Hmgb1 knockdown mice were fed with a methionine-and choline-deficient diet to induce MASH. RESULTS: We found that the expression of DDB1 in the liver was significantly decreased in MASH models. Hepatocyte-specific ablation of DDB1 markedly alleviated methionine-and choline-deficient diet-induced liver steatosis but unexpectedly exacerbated inflammation and fibrosis. Mechanistically, DDB1 deficiency attenuated hepatic steatosis by downregulating the expression of lipid synthesis and uptake genes. We identified high-mobility group box 1 as a key candidate target for DDB1-mediated liver injury. DDB1 deficiency upregulated the expression and extracellular release of high-mobility group box 1, which further increased macrophage infiltration and activated HSCs, ultimately leading to the exacerbation of liver inflammation and fibrosis. CONCLUSIONS: These data demonstrate the independent regulation of hepatic steatosis and injury in MASH. These findings have considerable clinical implications for the development of therapeutic strategies for MASH.
Asunto(s)
Proteínas de Unión al ADN , Hígado Graso , Proteína HMGB1 , Hepatocitos , Cirrosis Hepática , Ratones Noqueados , Animales , Ratones , Hepatocitos/metabolismo , Hepatocitos/patología , Cirrosis Hepática/patología , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Proteínas de Unión al ADN/genética , Humanos , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Hígado Graso/patología , Hígado Graso/metabolismo , Hígado Graso/genética , Masculino , Deficiencia de Colina/complicaciones , Modelos Animales de Enfermedad , Metionina/deficiencia , Hígado/patología , Hígado/metabolismo , Metabolismo de los LípidosRESUMEN
Increasing evidence indicated that mitophagy might play a crucial role in the occurrence and progression of liver diseases. In order to enhance our understanding of the intricate relationship between mitophagy and liver diseases, a comprehensive bibliometric analysis of the existing literature in this field was conducted. This analysis aimed to identify key trends, potential areas of future research, and forecast the development of this specific field. We systematically searched the Web of Science Core Collection (WoSCC) for publications related to mitophagy in liver diseases from 2000 to 2022. We conducted the bibliometric analysis and data visualization through VOSviewer and CiteSpace. The analysis of publication growth revealed a substantial increase in articles published in this field over the past years, indicating mitophagy's growing interest and significance in liver diseases. China and USA emerged as the leading contributors in the number of papers, with 294 and 194 independent papers, respectively. Exploring the mechanism of mitophagy in the initiation and procession of liver diseases was the main content of studies in this field, and Parkin-independent mediated mitophagy has attracted much attention recently. "Lipid metabolism," "cell death," "liver fibrosis" and "oxidative stress" were the primary keywords clusters. Additionally, "nlrp3 inflammasome", "toxicity" and "nonalcoholic steatohepatitis" were emerging research hotspots in this area and have the potential to continue to be focal areas of investigation in the future. This study represents the first systematic bibliometric analysis of research on mitophagy in liver diseases conducted over the past 20 years. By providing an overview of the existing literature and identifying current research trends, this analysis sheds light on the critical areas of investigation and paves the way for future studies in this field.
RESUMEN
Liver resection is the first-line treatment for primary liver cancers, providing the potential for a cure. However, concerns about post-hepatectomy liver failure (PHLF), a leading cause of death following extended liver resection, have restricted the population of eligible patients. Here, we engineered a clinical-grade bioartificial liver (BAL) device employing human-induced hepatocytes (hiHeps) manufactured under GMP conditions. In a porcine PHLF model, the hiHep-BAL treatment showed a remarkable survival benefit. On top of the supportive function, hiHep-BAL treatment restored functions, specifically ammonia detoxification, of the remnant liver and facilitated liver regeneration. Notably, an investigator-initiated study in seven patients with extended liver resection demonstrated that hiHep-BAL treatment was well tolerated and associated with improved liver function and liver regeneration, meeting the primary outcome of safety and feasibility. These encouraging results warrant further testing of hiHep-BAL for PHLF, the success of which would broaden the population of patients eligible for liver resection.
Asunto(s)
Fallo Hepático , Hígado Artificial , Humanos , Animales , Porcinos , Hepatocitos , Fallo Hepático/cirugía , Regeneración HepáticaRESUMEN
BACKGROUND: Laparoscopic liver resection has increased rapidly and procedure has almost extended to all the types of liver resection. Major liver resections, such as hemihepatectomies, were still innovative procedures in the exploration phase and continued cautious introduction of major laparoscopic liver resections was recommended by experts. The study aims to evaluate the safety of laparoscopic hemihepatectomy (LH) by the comparing with open hemihepatectomy (OH). METHODS: Patients who underwent hemihepatectomy in Sir Run Run Shaw Hospital from January 2012 to December 2017 were reviewed. A 1:1 matched study was performed between LH group and OH group. Patients who fail to be matched were excluded. Perioperative outcomes, complications and cost were compared between LH group and OH group. RESULTS: One hundred and thirty-eight exact matches for all matching variables were found between LH patients and OH patients. The length of postoperative hospital stay of LH group was significant shorter than the OH group (P=0.031). Intraoperative blood loss (P=0.005) and transfusion rate (P=0.001) in the LH group were significantly lower than the OH group. There was no mortality in either group. Twenty-six patients in LH group and 31 patients in OH group had complications and all of them recovered uneventfully after immediate treatments. The hospital expense of LH group was significantly higher than OH group (P<0.001). CONCLUSIONS: These results lead us to believe that LH is a safe procedure and it could be performed routinely in experienced laparoscopic centers.
RESUMEN
BACKGROUND: The mTOR pathway is vital for homeostasis, metabolism, cancer transplantation and regeneration in the liver. The aim of this study is to use a bibliometric method to reveal current research hotspots and promising future trends in mTOR signaling in liver diseases. METHODS: Publications were searched and downloaded from the Web of Science Core Collection (WOSCC) Database. CiteSpace, Carrot2, and VOSviewer programs were utilized to analyze the contribution of various countries/regions, institutes, and authors; and to reveal research hotspots and promising future trends in this research area. RESULTS: Until May 21, 2019, a total of 2,232 papers regarding mTOR signaling pathway in liver disease were included, and each paper was cited 23.21 times on average. The most active country was the USA. 5 landmark articles with centrality and burstiness were determined by co-citation analysis. Research hotspots included "liver transplantation" "hepatic stellate cell proliferation" "NAFLD" "therapy of HCC". Moreover, six key clusters were discovered during the procedure of "clustering", including "liver transplantation" "protein synthesis" "mTOR inhibitor" "following early cyclosporine withdrawal" "srebp-1 activation", and "hepatocellular cancer". CONCLUSIONS: Various scientific methods were applied to reveal scientific productivity, collaboration, and research hotspots in the mTOR signaling pathway in liver disease. Liver transplantation, hepatic stellate cell proliferation, non-alcoholic fatty liver disease (NAFLD), therapy of hepatocellular carcinoma (HCC), cell growth and autophagy, are research hotspots and are likely to be promising in the next few years. Further studies in this field are needed.