Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
J Med Genet ; 61(4): 340-346, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-37923380

RESUMEN

BACKGROUND: Oculopharyngodistal myopathy (OPDM) is a rare adult-onset neuromuscular disease, associated with CGG repeat expansions in the 5' untranslated region of LRP12, GIPC1, NOTCH2NLC and RILPL1. However, the genetic cause of a proportion of pathoclinically confirmed cases remains unknown. METHODS: A total of 26 OPDM patients with unknown genetic cause(s) from 4 tertiary referral hospitals were included in this study. Clinical data and laboratory findings were collected. Muscle samples were observed by histological and immunofluorescent staining. Long-read sequencing was initially conducted in six patients with OPDM. Repeat-primed PCR was used to screen the CGG repeat expansions in LOC642361/NUTM2B-AS1 in all 26 patients. RESULTS: We identified CGG repeat expansion in the non-coding transcripts of LOC642361/NUTM2B-AS1 in another two unrelated Chinese cases with typical pathoclinical features of OPDM. The repeat expansion was more than 70 times in the patients but less than 40 times in the normal controls. Both patients showed no leucoencephalopathy but one showed mild cognitive impairment detected by Montreal Cognitive Assessment. Rimmed vacuoles and p62-positive intranuclear inclusions (INIs) were identified in muscle pathology, and colocalisation of CGG RNA foci with p62 was also found in the INIs of patient-derived fibroblasts. CONCLUSIONS: We identified another two unrelated cases with CGG repeat expansion in the long non-coding RNA of the LOC642361/NUTM2B-AS1 gene, presenting with a phenotype of OPDM. Our cases broadened the recognised phenotypic spectrum and pathogenesis in the disease associated with CGG repeat expansion in LOC642361/NUTM2B-AS1.


Asunto(s)
Distrofias Musculares , Adulto , Humanos , Distrofias Musculares/genética , Fenotipo , Cuerpos de Inclusión Intranucleares/genética , Expansión de Repetición de Trinucleótido/genética
2.
Mol Cancer ; 23(1): 178, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39215288

RESUMEN

Drug resistance in cancer cells significantly diminishes treatment efficacy, leading to recurrence and metastasis. A critical factor contributing to this resistance is the epigenetic alteration of gene expression via RNA modifications, such as N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), 7-methylguanosine (m7G), pseudouridine (Ψ), and adenosine-to-inosine (A-to-I) editing. These modifications are pivotal in regulating RNA splicing, translation, transport, degradation, and stability. Governed by "writers," "readers," and "erasers," RNA modifications impact numerous biological processes and cancer progression, including cell proliferation, stemness, autophagy, invasion, and apoptosis. Aberrant RNA modifications can lead to drug resistance and adverse outcomes in various cancers. Thus, targeting RNA modification regulators offers a promising strategy for overcoming drug resistance and enhancing treatment efficacy. This review consolidates recent research on the role of prevalent RNA modifications in cancer drug resistance, with a focus on m6A, m1A, m5C, m7G, Ψ, and A-to-I editing. Additionally, it examines the regulatory mechanisms of RNA modifications linked to drug resistance in cancer and underscores the existing limitations in this field.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias , Procesamiento Postranscripcional del ARN , Humanos , Resistencia a Antineoplásicos/genética , Neoplasias/genética , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/metabolismo , Animales , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Epigénesis Genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , ARN/genética , ARN/metabolismo
3.
J Transl Med ; 22(1): 237, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38439045

RESUMEN

BACKGROUND: Intratumoral bacteria might play essential roles in tumorigenesis in different cancer types. However, its features and potential roles in hepatocellular carcinoma (HCC) are largely unknown. METHODS: In this study, we assessed bacterial RNA by 16S rRNA fluorescence in situ hybridization and detected bacterial lipopolysaccharide (LPS) via immunohistochemistry. Hepa1-6 cells were used to establish orthotopic HCC models in mice. 2bRAD sequencing for microbiome was performed to determine the intratumoral bacterial characteristics, and liquid chromatography-mass spectrometry was conducted to explore the metabolic profile. The potential association between different intratumoral microbiota and metabolites were evaluated. RESULTS: We detected bacterial 16S rRNA and LPS in HCC tissues from the patients with HCC. In HCC mouse model, we found that the intratumor bacteria in HCC tissues were significantly different to adjacent nontumor tissues. Furthermore, we observed different metabolites in HCC tissues and adjacent nontumor tissues, such as N-acetyl-D-glucosamine and a-lactose. Our results showed that several bacteria were significantly associated with metabolites, such as Pseudomonas koreensis, which was positively correlated with N-acetyl-D-glucosamine and negatively correlated with citrulline. CONCLUSIONS: This study confirmed the close association between different bacteria and metabolites, which might provide novel opportunities for developing new biomarkers and therapeutic targets for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Ratones , Animales , Carcinoma Hepatocelular/genética , ARN Ribosómico 16S/genética , Acetilglucosamina , Hibridación Fluorescente in Situ , Lipopolisacáridos/farmacología , Ratones Endogámicos , Bacterias
4.
Cell Commun Signal ; 22(1): 79, 2024 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291517

RESUMEN

N1-methyladenosine (m1A) is a post-transcriptionally modified RNA molecule that plays a pivotal role in the regulation of various biological functions and activities. Especially in cancer cell invasion, proliferation and cell cycle regulation. Over recent years, there has been a burgeoning interest in investigating the m1A modification of RNA. Most studies have focused on the regulation of m1A in cancer enrichment areas and different regions. This review provides a comprehensive overview of the methodologies employed for the detection of m1A modification. Furthermore, this review delves into the key players in m1A modification, known as the "writers," "erasers," and "readers." m1A modification is modified by the m1A methyltransferases, or writers, such as TRMT6, TRMT61A, TRMT61B, TRMT10C, NML, and, removed by the demethylases, or erasers, including FTO and ALKBH1, ALKBH3. It is recognized by m1A-binding proteins YTHDF1, TYHDF2, TYHDF3, and TYHDC1, also known as "readers". Additionally, we explore the intricate relationship between m1A modification and its regulators and their implications for the development and progression of specific types of cancer, we discuss how m1A modification can potentially facilitate the discovery of novel approaches for cancer diagnosis, treatment, and prognosis. Our summary of m1A methylated adenosine modification detection methods and regulatory mechanisms in various cancers provides useful insights for cancer diagnosis, treatment, and prognosis. Video Abstract.


Asunto(s)
Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/metabolismo , ARN/genética , ARN/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Metilación , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/metabolismo , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 3 de AlkB/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo
5.
Cell Commun Signal ; 22(1): 49, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233930

RESUMEN

N4-acetylcytidine (ac4C) is a highly conserved chemical modification widely found in eukaryotic and prokaryotic RNA, such as tRNA, rRNA, and mRNA. This modification is significantly associated with various human diseases, especially cancer, and its formation depends on the catalytic activity of N-acetyltransferase 10 (NAT10), the only known protein that produces ac4C. This review discusses the detection techniques and regulatory mechanisms of ac4C and summarizes ac4C correlation with tumor occurrence, development, prognosis, and drug therapy. It also comments on a new biomarker for early tumor diagnosis and prognosis prediction and a new target for tumor therapy. Video Abstract.


Asunto(s)
Neoplasias , ARN , Humanos , ARN/metabolismo , Citidina/genética , ARN Mensajero/genética , Neoplasias/genética
6.
Cell Commun Signal ; 22(1): 69, 2024 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273292

RESUMEN

Tumors of the digestive system pose a significant threat to human health and longevity. These tumors are associated with high morbidity and mortality rates, leading to a heavy economic burden on healthcare systems. Several intratumoral microorganisms are present in digestive system tumors, and their sources and abundance display significant heterogeneity depending on the specific tumor subtype. These microbes have a complex and precise function in the neoplasm. They can facilitate tumor growth through various mechanisms, such as inducing DNA damage, influencing the antitumor immune response, and promoting the degradation of chemotherapy drugs. Therefore, these microorganisms can be targeted to inhibit tumor progression for improving overall patient prognosis. This review focuses on the current research progress on microorganisms present in the digestive system tumors and how they influence the initiation, progression, and prognosis of tumors. Furthermore, the primary sources and constituents of tumor microbiome are delineated. Finally, we summarize the application potential of intratumoral microbes in the diagnosis, treatment, and prognosis prediction of digestive system tumors. Video Abstract.


Asunto(s)
Neoplasias del Sistema Digestivo , Humanos , Neoplasias del Sistema Digestivo/diagnóstico , Neoplasias del Sistema Digestivo/genética , Neoplasias del Sistema Digestivo/patología , Daño del ADN
7.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34795061

RESUMEN

Translation of messenger RNA (mRNA) is regulated through a diverse set of RNA-binding proteins. A significant fraction of RNA-binding proteins contains prion-like domains which form functional prions. This raises the question of how prions can play a role in translational control. Local control of translation in dendritic spines by prions has been invoked in the mechanism of synaptic plasticity and memory. We show how channeling through diffusion and processive translation cooperate in highly ordered mRNA/prion aggregates as well as in less ordered mRNA/protein condensates depending on their substructure. We show that the direction of translational control, whether it is repressive or activating, depends on the polarity of the mRNA distribution in mRNA/prion assemblies which determines whether vectorial channeling can enhance recycling of ribosomes. Our model also addresses the effect of changes of substrate concentration in assemblies that have been suggested previously to explain translational control by assemblies through the introduction of a potential of mean force biasing diffusion of ribosomes inside the assemblies. The results from the model are compared with the experimental data on translational control by two functional RNA-binding prions, CPEB involved in memory and Rim4 involved in gametogenesis.


Asunto(s)
Condensados Biomoleculares/metabolismo , Modelos Biológicos , Priones/metabolismo , ARN Mensajero/metabolismo , Plasticidad Neuronal , Proteínas de Unión al ARN/metabolismo , Ribosomas/metabolismo
8.
Environ Toxicol ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700434

RESUMEN

BACKGROUND: Cigarette smoking is considered as a major risk factor for esophageal carcinoma (ESCA) patients. Neutrophil activation plays a key role in cancer development and progression. However, the relationship between cigarette smoking and neutrophils in ESCA patients remained unclear. METHODS: Single-cell RNA sequencing (scRNA-seq) and bulk RNA sequencing data were obtained from public databases. Uniform manifold approximation and projection (UMAP) was used to perform downscaling and clustering based on scRNA-seq data. The module genes associated with smoking in ESCA patients were filtered by weighted gene co-expression network analysis (WGCNA). Using the "AUCell" package, the enrichment of different cell subpopulations and gene collections were assessed. "CellChat" and "CellphoneDB" were used to infer the probability and significance of ligand-receptor interactions between different cell subpopulations. RESULTS: WGCNA was performed to screened module genes associated with smoking in ESCA patients from MEdarkquosie, MEturquoise, and MEgreenyellow. Next, eight cell clusters were identified, and using the AUCell score, we determined that neutrophil clusters were more active in the gene modules associated with smoking in ESCA patients. Two neutrophil subtypes, Neutrophils 1 and Neutrophils 2, exhibited greater enrichment in inflammatory response regulation, intercellular adhesion, and regulation of T cell activation. Furthermore, we found that neutrophils may pass through AMPT-(ITGA5 + ITGB1) and ICAM1-AREG in order to promote the development of ESCA, and that the expression levels of the receptor genes insulin-degrading enzyme and ITGB1 were significantly and positively correlated with cigarette smoking per day. CONCLUSION: Combining smoking-related gene modules and scRNA-seq, the current findings revealed the heterogeneity of neutrophils in ESCA and a tumor-promoting role of neutrophils in the tumor microenvironment of smoking ESCA patients.

9.
Circulation ; 146(24): 1855-1881, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36384284

RESUMEN

BACKGROUND: Pulmonary hypertension (PH) is associated with increased expression of VEGF-A (vascular endothelial growth factor A) and its receptor, VEGFR2 (vascular endothelial growth factor 2), but whether and how activation of VEGF-A signal participates in the pathogenesis of PH is unclear. METHODS: VEGF-A/VEGFR2 signal activation and VEGFR2 Y949-dependent vascular leak were investigated in lung samples from patients with PH and mice exposed to hypoxia. To study their mechanistic roles in hypoxic PH, we examined right ventricle systolic pressure, right ventricular hypertrophy, and pulmonary vasculopathy in mutant mice carrying knock-in of phenylalanine that replaced the tyrosine at residual 949 of VEGFR2 (Vefgr2Y949F) and mice with conditional endothelial deletion of Vegfr2 after chronic hypoxia exposure. RESULTS: We show that PH leads to excessive pulmonary vascular leak in both patients and hypoxic mice, and this is because of an overactivated VEGF-A/VEGFR2 Y949 signaling axis. In the context of hypoxic PH, activation of Yes1 and c-Src and subsequent VE-cadherin phosphorylation in endothelial cells are involved in VEGFR2 Y949-induced vascular permeability. Abolishing VEGFR2 Y949 signaling by Vefgr2Y949F point mutation was sufficient to prevent pulmonary vascular permeability and inhibit macrophage infiltration and Rac1 activation in smooth muscle cells under hypoxia exposure, thereby leading to alleviated PH manifestations, including muscularization of distal pulmonary arterioles, elevated right ventricle systolic pressure, and right ventricular hypertrophy. It is important that we found that VEGFR2 Y949 signaling in myeloid cells including macrophages was trivial and dispensable for hypoxia-induced vascular abnormalities and PH. In contrast with selective blockage of VEGFR2 Y949 signaling, disruption of the entire VEGFR2 signaling by conditional endothelial deletion of Vegfr2 promotes the development of PH. CONCLUSIONS: Our results support the notion that VEGF-A/VEGFR2 Y949-dependent vascular permeability is an important determinant in the pathogenesis of PH and might serve as an attractive therapeutic target pathway for this disease.


Asunto(s)
Permeabilidad Capilar , Hipertensión Pulmonar , Factor A de Crecimiento Endotelial Vascular , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Animales , Ratones , Permeabilidad Capilar/fisiología , Células Endoteliales/metabolismo , Hipertensión Pulmonar/complicaciones , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/fisiopatología , Hipertrofia Ventricular Derecha/etiología , Hipoxia/complicaciones , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
10.
J Am Chem Soc ; 145(19): 10659-10668, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37145883

RESUMEN

Liquid-liquid phase separation (LLPS) of heterogeneous ribonucleoproteins (hnRNPs) drives the formation of membraneless organelles, but structural information about their assembled states is still lacking. Here, we address this challenge through a combination of protein engineering, native ion mobility mass spectrometry, and molecular dynamics simulations. We used an LLPS-compatible spider silk domain and pH changes to control the self-assembly of the hnRNPs FUS, TDP-43, and hCPEB3, which are implicated in neurodegeneration, cancer, and memory storage. By releasing the proteins inside the mass spectrometer from their native assemblies, we could monitor conformational changes associated with liquid-liquid phase separation. We find that FUS monomers undergo an unfolded-to-globular transition, whereas TDP-43 oligomerizes into partially disordered dimers and trimers. hCPEB3, on the other hand, remains fully disordered with a preference for fibrillar aggregation over LLPS. The divergent assembly mechanisms revealed by ion mobility mass spectrometry of soluble protein species that exist under LLPS conditions suggest structurally distinct complexes inside liquid droplets that may impact RNA processing and translation depending on biological context.


Asunto(s)
Proteínas de Unión al ADN , Proteínas de Unión al ARN , Proteínas de Unión al ADN/química , Espectrometría de Masas
11.
J Transl Med ; 21(1): 774, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37915034

RESUMEN

The phosphoinositide 3-kinase (PI3K)/AKT signaling pathway plays a crucial role in the pathogenesis of cancer. The dysregulation of this pathway has been linked to the development and initiation of various types of cancer. Recently, epigenetic modifications, particularly N6-methyladenosine (m6A), have been recognized as essential contributors to mRNA-related biological processes and translation. The abnormal expression of m6A modification enzymes has been associated with oncogenesis, tumor progression, and drug resistance. Here, we review the role of m6A modification in regulating the PI3K/AKT pathway in cancer and its implications in the development of novel strategies for cancer treatment.


Asunto(s)
Neoplasias , Fosfatidilinositol 3-Quinasas , Humanos , Proteínas Proto-Oncogénicas c-akt , Neoplasias/genética , Fosfatidilinositol 3-Quinasa , Transducción de Señal
12.
Cell Commun Signal ; 21(1): 348, 2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-38049863

RESUMEN

Polyamines are essential for the growth and proliferation of mammalian cells and are intimately involved in biological mechanisms such as DNA replication, RNA transcription, protein synthesis, and post-translational modification. These mechanisms regulate cellular proliferation, differentiation, programmed cell death, and the formation of tumors. Several studies have confirmed the positive effect of polyamines on the maintenance of health, while others have demonstrated that their activity may promote the occurrence and progression of diseases. This review examines a variety of topics, such as polyamine source and metabolism, including metabolism, transport, and the potential impact of polyamines on health and disease. In addition, a brief summary of the effects of oncogenes and signaling pathways on tumor polyamine metabolism is provided. Video Abstract.


Asunto(s)
Neoplasias , Poliaminas , Animales , Humanos , Poliaminas/metabolismo , Poliaminas/farmacología , Apoptosis , ARN , Neoplasias/metabolismo , Proliferación Celular , Mamíferos/metabolismo
13.
PLoS Comput Biol ; 18(11): e1010657, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36346822

RESUMEN

A prion-like RNA-binding protein, CPEB3, can regulate local translation in dendritic spines. CPEB3 monomers repress translation, whereas CPEB3 aggregates activate translation of its target mRNAs. However, the CPEB3 aggregates, as long-lasting prions, may raise the problem of unregulated translational activation. Here, we propose a computational model of the complex structure between CPEB3 RNA-binding domain (CPEB3-RBD) and small ubiquitin-like modifier protein 2 (SUMO2). Free energy calculations suggest that the allosteric effect of CPEB3-RBD/SUMO2 interaction can amplify the RNA-binding affinity of CPEB3. Combining with previous experimental observations on the SUMOylation mode of CPEB3, this model suggests an equilibrium shift of mRNA from binding to deSUMOylated CPEB3 aggregates to binding to SUMOylated CPEB3 monomers in basal synapses. This work shows how a burst of local translation in synapses can be silenced following a stimulation pulse, and explores the CPEB3/SUMO2 interplay underlying the structural change of synapses and the formation of long-term memories.


Asunto(s)
Espinas Dendríticas , Priones , Motivo de Reconocimiento de ARN , Proteínas de Unión al ARN , ARN Mensajero
14.
Cell Mol Life Sci ; 79(10): 528, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36163311

RESUMEN

The ciliary body critically contributes to the ocular physiology with multiple responsibilities in the production of aqueous humor, vision accommodation and intraocular immunity. Comparatively little work, however, has revealed the single-cell molecular taxonomy of the human ciliary body required for studying these functionalities. In this study, we report a comprehensive atlas of the cellular and molecular components of human ciliary body as well as their interactions using single-cell RNA sequencing (scRNAseq). Cluster analysis of the transcriptome of 14,563 individual ciliary cells from the eyes of 3 human donors identified 14 distinct cell types, including the ciliary epithelium, smooth muscle, vascular endothelial cell, immune cell and other stromal cell populations. Cell-type discriminative gene markers were also revealed. Unique gene expression patterns essential for ciliary epithelium-mediated aqueous humor inflow and ciliary smooth muscle contractility were identified. Importantly, we discovered the transitional states that probably contribute to the transition of ciliary macrophage into retina microglia and verified no lymphatics in the ciliary body. Moreover, the utilization of CellPhoneDB allowed us to systemically infer cell-cell interactions among diverse ciliary cells including those that potentially participate in the pathogenesis of glaucoma and uveitis. Altogether, these new findings provide insights into the regulation of intraocular pressure, accommodation reflex and immune homeostasis under physiological and pathological conditions.


Asunto(s)
Cuerpo Ciliar , Glaucoma , Humor Acuoso/metabolismo , Cuerpo Ciliar/metabolismo , Cuerpo Ciliar/patología , Glaucoma/metabolismo , Humanos , Presión Intraocular , Transcriptoma
15.
Proc Natl Acad Sci U S A ; 117(36): 22128-22134, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32848053

RESUMEN

Dendritic spines are tiny membranous protrusions on the dendrites of neurons. Dendritic spines change shape in response to input signals, thereby strengthening the connections between neurons. The growth and stabilization of dendritic spines is thought to be essential for maintaining long-term memory. Actin cytoskeleton remodeling in spines is a key element of their formation and growth. More speculatively, the aggregation of CPEB3, a functional prion that binds RNA, has been reported to be involved in the maintenance of long-term memory. Here we study the interaction between actin and CPEB3 and propose a molecular model for the complex structure of CPEB3 and an actin filament (F-actin). The results of our computational modeling, including both energetic and structural analyses, are compared with novel data from peptide array experiments. Our model of the CPEB3/F-actin interaction suggests that F-actin potentially triggers the aggregation-prone structural transition of a short CPEB3 sequence by zipping it into a beta-hairpin form. We also propose that the CPEB3/F-actin interaction might be regulated by the SUMOylation of CPEB3, based on bioinformatic searches for potential SUMOylation sites as well as SUMO interacting motifs in CPEB3. On the basis of these results and the existing literature, we put forward a possible molecular mechanism underlying long-term memory that involves CPEB3's binding to actin, its aggregation, and its regulation by SUMOylation.


Asunto(s)
Actinas/química , Proteínas de Unión al ARN/química , Actinas/metabolismo , Secuencias de Aminoácidos , Simulación por Computador , Humanos , Memoria a Largo Plazo , Modelos Moleculares , Neuronas/química , Neuronas/fisiología , Conformación Proteica , Proteínas de Unión al ARN/metabolismo , Sumoilación
16.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36675129

RESUMEN

Ferroptosis, characterized by excessive iron accumulation and lipid peroxidation, is a novel form of iron-dependent cell death, which is morphologically, genetically, and biochemically distinct from other known cell death types, such as apoptosis, necrosis, and autophagy. Emerging evidence shows that glutathione peroxidase 4 (GPX4), a critical core regulator of ferroptosis, plays an essential role in protecting cells from ferroptosis by removing the product of iron-dependent lipid peroxidation. The fast-growing studies on ferroptosis in cancer have boosted a perspective on its use in cancer therapeutics. In addition, significant progress has been made in researching and developing tumor therapeutic drugs targeting GPX4 based on ferroptosis, especially in acquired drug resistance. Selenium modulates GPX4-mediated ferroptosis, and its existing form, selenocysteine (Sec), is the active center of GPX4. This review explored the structure and function of GPX4, with the overarching goal of revealing its mechanism and potential application in tumor therapy through regulating ferroptosis. A deeper understanding of the mechanism and application of GPX4-mediated ferroptosis in cancer therapy will provide new strategies for the research and development of antitumor drugs.


Asunto(s)
Ferroptosis , Neoplasias , Humanos , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Muerte Celular/fisiología , Hierro/metabolismo , Peroxidación de Lípido , Neoplasias/metabolismo , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Glutatión/metabolismo
17.
Int J Mol Sci ; 24(10)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37239939

RESUMEN

Liver cancer is a public disease burden with an increasing incidence rate globally. Bile acid and bile salt's metabolic pathways participate in liver tumorigenesis and regulate the tumor microenvironment. However, there still remains a lack of systematic analysis of the genes related to bile acid and bile salt metabolic pathways in hepatocellular carcinoma (HCC). The mRNA expression data and clinical follow-up information of patients with HCC were obtained from public databases, including The Cancer Genome Atlas, Hepatocellular Carcinoma Database, Gene Expression Omnibus, and IMvigor210. The bile acid and bile salt metabolism-related genes were extracted from Molecular Signatures Database. Univariate Cox and logistic least absolute shrinkage and selection operator regression analyses were conducted to establish the risk model. Single sample gene set enrichment analysis, Estimation of STromal and Immune cells in MAlignant Tumour tissues using Expression data, and Tumor Immune Dysfunction and Exclusion were adopted to analyze immune status. The efficiency of the risk model was tested using a decision tree and a nomogram. We determined two molecular subtypes based on bile acid and bile salt metabolism-related genes, with the prognosis of the S1 subtype being markedly superior to the S2 subtype. Next, we established a risk model based on the differentially expressed genes between the two molecular subtypes. The high-risk and low-risk groups showed significant differences in the biological pathways, immune score, immunotherapy response, and drug susceptibility. Our results demonstrated the good predictive performance of the risk model in immunotherapy datasets and established that it could be an essential factor affecting the prognosis of HCC. In conclusion, we identified two molecular subtypes based on bile acid and bile salt metabolism-related genes. The risk model established in our study could effectively predict the prognosis of patients with HCC and their immunotherapeutic response, which may contribute to targeted immunotherapy in HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Ácidos y Sales Biliares , Neoplasias Hepáticas/genética , Factores de Riesgo , Carcinogénesis , Microambiente Tumoral/genética , Biomarcadores de Tumor/genética
18.
Nurs Ethics ; 30(7-8): 1125-1137, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37247410

RESUMEN

BACKGROUND: Altruism is the core of nursing professionalism. Graduate nursing education in China started late and is still developing, exploring the current state of altruistic behavior and the perceived experience of altruism among graduate nursing students may have important implications for nursing education. OBJECTIVE: Explore the current state of altruistic behavior and the perceived experience of altruism among graduate nursing students in China. RESEARCH DESIGN: This is a descriptive phenomenological qualitative research study, semi-structured in-depth interviews were conducted. Seventeen graduate nursing students from three schools were selected to participate in the study. Colaizzi's analysis method was performed with NVivo software to develop common themes from the data. ETHICAL CONSIDERATIONS: The research proposal was approved by the Research Ethic Committee of Yangzhou University, China. RESULTS: Four themes emerged from the analysis of the interviews of the 17 participants: "Definition of altruism," "Altruism in the nursing profession," "Altruism applied in practice," and "Factors influencing altruistic behavior." CONCLUSIONS: Although participants indicated that the concept of "altruism" was relatively new to them, altruistic behavior is common in both their work and life. Many factors influence the altruistic behavior of graduate nursing students, including the environment, personal factors, education, recipient factors, occupational factors, and gains and losses. Families, schools, and hospitals should create favorable environments to foster altruistic tendencies in students.


Asunto(s)
Educación en Enfermería , Estudiantes de Enfermería , Humanos , Altruismo , Investigación Cualitativa , Percepción
19.
Mol Cancer ; 21(1): 108, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35513849

RESUMEN

CircRNAs, covalently closed noncoding RNAs, are widely expressed in a wide range of species ranging from viruses to plants to mammals. CircRNAs were enriched in the Wnt pathway. Aberrant Wnt pathway activation is involved in the development of various types of cancers. Accumulating evidence indicates that the circRNA/Wnt axis modulates the expression of cancer-associated genes and then regulates cancer progression. Wnt pathway-related circRNA expression is obviously associated with many clinical characteristics. CircRNAs could regulate cell biological functions by interacting with the Wnt pathway. Moreover, Wnt pathway-related circRNAs are promising potential biomarkers for cancer diagnosis, prognosis evaluation, and treatment. In our review, we summarized the recent research progress on the role and clinical application of Wnt pathway-related circRNAs in tumorigenesis and progression.


Asunto(s)
Neoplasias , ARN Circular , Animales , Carcinogénesis/genética , Humanos , Mamíferos/genética , Neoplasias/genética , ARN Circular/genética , ARN no Traducido , Vía de Señalización Wnt
20.
Cancer Cell Int ; 22(1): 132, 2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35331235

RESUMEN

MicroRNAs (miRNAs) are one type of noncoding RNAs that interfere with mRNA translation to downregulate gene expression, which results in posttranscriptional gene silencing. Over the past two decades, miRNAs have been widely reported to impact the progression of malignant tumours by interfering with cancer initiation and progression; therefore, miRNAs represent potential new diagnostic and therapeutic tools. miR-650 is a newly identified miR, and increasing studies have demonstrated that miR-650 plays critical roles in cancer progression, such as mediating the Wnt signalling pathway/AXIN1 (axis inhibition protein 1) axis in hepatocellular carcinoma. Nevertheless, associations between the expression patterns and molecular mechanisms of miR-650 in cancer have not been comprehensively described. In this article, we review the existing evidence regarding the mechanisms by which miR-650 expression is altered and their relation to cancer. Moreover, the promising clinical application of miR-650 for diagnosis and treatment is highlighted.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda