Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Angew Chem Int Ed Engl ; : e202410457, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004608

RESUMEN

Single-atom catalysts have garnered significant attention due to their exceptional atom utilization and unique properties. However, the practical application of these catalysts is often impeded by challenges such as sintering-induced instability and poisoning of isolated atoms due to strong gas adsorption. In this study, we employed the mechanochemical method to insert single Cu atoms into the subsurface of Fe2O3 support. By manipulating the location of single atoms at the surface or subsurface, catalysts with distinct adsorption properties and reaction mechanisms can be achieved. It was observed that the subsurface Cu single atoms in Fe2O3 remained isolated under both oxidation and reduction environments, whereas surface Cu single atoms on Fe2O3 experienced sintering under reduction conditions. The unique properties of these subsurface single-atom catalysts call for innovations and new understandings in catalyst design.

2.
Small ; 19(42): e2302130, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37345550

RESUMEN

Exploiting highly active and bifunctional catalysts for both hydrogen evolution reaction (HER) and hydrazine oxidation reaction (HzOR) is a prerequisite for the hydrogen acquisition. High-entropy materials have received widespread attention in catalysis, but the high-performance bifunctional electrodes are still lacking. Herein, a novel P-modified amorphous high-entropy CoFeNiCrMn compound is developed on nickel foam (NF) by one-step electrodeposition strategy. The achieved CoFeNiCrMnP/NF delivers remarkable HER and HzOR performance, where the overpotentials as low as 51 and 268 mV are realized at 100 mA cm-2 . The improved cell voltage of 91 mV is further demonstrated at 100 mA cm-2 by assessing CoFeNiCrMnP/NF in the constructed hydrazine-assisted water electrolyser, which is almost 1.54 V lower than the HER||OER system. Experimental results confirm the important role of each element in regulating the bifuncational performance of high-entropy catalysts. The main influencing elements seem to be Fe and Ni for HER, while the P-modification and Cr metal may contribute a lot for HzOR. These synergistic advantages help to lower the energy barriers and improve the reaction kinetics, resulting in the excellent bifunctional activity of the CoFeNiCrMnP/NF. The work offers a feasible strategy to develop self-supporting electrode with high-entropy materials for overall water splitting.

3.
Chem Soc Rev ; 49(20): 7454-7478, 2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-32996520

RESUMEN

Redox mediators (RMs) play pivotal roles in enhancing the performance of electrochemical energy storage and conversion systems. Unlike the widely explored areas of electrode materials, electrolytes, separators, and electrolyte additives, RMs have received little attention. This review provides a comprehensive discussion toward understanding the effects of RMs on electrochemical systems, underlying redox mechanisms, and reaction kinetics both experimentally and theoretically. Our discussion focuses on the roles of RMs in various electrochemical systems such as lithium-ion batteries, Li-O2 batteries, Li-S batteries, decoupling electrolysis, supercapacitors, and microbial fuel cells. Depending on the reaction regions where the RMs become active, we can classify them into bulk, solid-solid interfacial, solid-liquid interfacial, and cell-unit RMs. The prospect of developing RMs with effective charge transfer properties along with minimal side-effects is an exciting research direction. Moreover, the introduction of an efficient RM into an electrochemical system can fundamentally change its chemistry; in particular, the electrode reaction polarization can be considerably decreased. In this context, we discuss the key properties of RMs applied for various purposes, and the main issues are addressed.

4.
Angew Chem Int Ed Engl ; 59(17): 6665-6674, 2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-31587466

RESUMEN

Electroplating has been studied for centuries, not only in the laboratory but also in industry for machinery, electronics, automobile, aviation, and other fields. The lithium-metal anode is the Holy Grail electrode because of its high energy density. But the recyclability of lithium-metal batteries remains quite challenging. The essence of both conventional electroplating and lithium plating is the same, reduction of metal cations. Thus, industrial electroplating knowledge can be applied to revisit the electroplating process for lithium-metal anodes. In conventional electroplating, some strategies like using additives, modifying substrates, applying pulse current, and agitating electrolyte have been explored to suppress dendrite growth. These methods are also effective in lithium-metal anodes. Inspired by that, we revisit the fundamental electroplating theory for lithium-metal anodes in this Minireview, mainly drawing attention to the theory of electroplating thermodynamics and kinetics. Analysis of essential differences between traditional electroplating and plating/stripping of lithium-metal anodes is also presented. Thus, industrial electroplating knowledge can be applied to the electroplating process of lithium-metal anodes to improve commercial lithium-metal batteries and the study of lithium plating/stripping can further enrich the classical electroplating technique.

5.
Small ; 14(37): e1801423, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30047235

RESUMEN

Rechargeable batteries are regarded as the most promising candidates for practical applications in portable electronic devices and electric vehicles. In recent decades, lithium metal batteries (LMBs) have been extensively studied due to their ultrahigh energy densities. However, short lifespan and poor safety caused by uncontrollable dendrite growth hinder their commercial applications. Besides, a clear understanding of Li nucleation and growth has not yet been obtained. In this Review, the failure mechanisms of Li metal anodes are ascribed to high reactivity of lithium, virtually infinite volume changes, and notorious dendrite growth. The principles of Li deposition nucleation and early dendrite growth are discussed and summarized. Correspondingly, four rational strategies of controlling nucleation are proposed to guide Li nucleation and growth. Finally, perspectives for understanding the Li metal deposition process and realizing safe and high-energy rechargeable LMBs are given.

6.
Nat Commun ; 15(1): 5751, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982071

RESUMEN

Oxygen vacancy (Ov) is an anionic defect widely existed in metal oxide lattice, as exemplified by CeO2, TiO2, and ZnO. As Ov can modify the band structure of solid, it improves the physicochemical properties such as the semiconducting performance and catalytic behaviours. We report here a new type of Ov as an intrinsic part of a perfect crystalline surface. Such non-defect Ov stems from the irregular hexagonal sawtooth-shaped structure in the (111) plane of trivalent rare earth oxides (RE2O3). The materials with such intrinsic Ov structure exhibit excellent performance in ammonia decomposition reaction with surface Ru active sites. Extremely high H2 formation rate has been achieved at ~1 wt% of Ru loading over Sm2O3, Y2O3 and Gd2O3 surface, which is 1.5-20 times higher than reported values in the literature. The discovery of intrinsic Ov suggests great potentials of applying RE oxides in heterogeneous catalysis and surface chemistry.

7.
ACS Catal ; 13(20): 13816-13827, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37881788

RESUMEN

The selective catalytic oxidation of NH3 (NH3-SCO) to N2 is an important reaction for the treatment of diesel engine exhaust. Co3O4 has the highest activity among non-noble metals but suffers from N2O release. Such N2O emissions have recently been regulated due to having a 300× higher greenhouse gas effect than CO2. Here, we design CuO-supported Co3O4 as a cascade catalyst for the selective oxidation of NH3 to N2. The NH3-SCO reaction on CuO-Co3O4 follows a de-N2O pathway. Co3O4 activates gaseous oxygen to form N2O. The high redox property of the CuO-Co3O4 interface promotes the breaking of the N-O bond in N2O to form N2. The addition of CuO-Co3O4 to the Pt-Al2O3 catalyst reduces the full NH3 conversion temperature by 50 K and improves the N2 selectivity by 20%. These findings provide a promising strategy for reducing N2O emissions and will contribute to the rational design and development of non-noble metal catalysts.

8.
ACS Catal ; 12(24): 15207-15217, 2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36570079

RESUMEN

Surface oxidation chemistry involves the formation and breaking of metal-oxygen (M-O) bonds. Ideally, the M-O bonding strength determines the rate of oxygen absorption and dissociation. Here, we design reactive bridging O2- species within the atomic Cu-O-Fe site to accelerate such oxidation chemistry. Using in situ X-ray absorption spectroscopy at the O K-edge and density functional theory calculations, it is found that such bridging O2- has a lower antibonding orbital energy and thus weaker Cu-O/Fe-O strength. In selective NH3 oxidation, the weak Cu-O/Fe-O bond enables fast Cu redox for NH3 conversion and direct NO adsorption via Cu-O-NO to promote N-N coupling toward N2. As a result, 99% N2 selectivity at 100% conversion is achieved at 573 K, exceeding most of the reported results. This result suggests the importance to design, determine, and utilize the unique features of bridging O2- in catalysis.

9.
Natl Sci Rev ; 7(2): 333-341, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34692049

RESUMEN

Rechargeable magnesium batteries have received extensive attention as the Mg anodes possess twice the volumetric capacity of their lithium counterparts and are dendrite-free. However, Mg anodes suffer from surface passivation film in most glyme-based conventional electrolytes, leading to irreversible plating/stripping behavior of Mg. Here we report a facile and safe method to obtain a modified Mg metal anode with a Sn-based artificial layer via ion-exchange and alloying reactions. In the artificial coating layer, Mg2Sn alloy composites offer a channel for fast ion transport and insulating MgCl2/SnCl2 bestows the necessary potential gradient to prevent deposition on the surface. Significant improved ion conductivity of the solid electrolyte interfaces and decreased overpotential of Mg symmetric cells in Mg(TFSI)2/DME electrolyte are obtained. The coated Mg anodes can sustain a stable plating/stripping process over 4000 cycles at a high current density of 6 mA cm-2. This finding provides an avenue to facilitate fast ion diffusion kinetics of Mg metal anodes in conventional electrolytes.

10.
ACS Appl Mater Interfaces ; 12(48): 53712-53718, 2020 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-33210901

RESUMEN

Selective transformation of biomass feedstocks to platform molecules is a key pursuit for sustainable chemical production. Compared to petrochemical processes, biomass transformation requires the defunctionalization of highly polar molecules at relatively low temperatures. As a result, catalysts based on functional organic polymers may play a prominent role. Targeting the hydrogenolysis of the platform chemical 5-hydroxymethylfurfural (5-HMF), here, we design a polyphenylene (PPhen) framework with purely sp2-hybridized carbons that can isolate 5-HMF via π-π stacking, preventing hemiacetal and humin formation. With good swellability, the PPhen framework here has successfully supported and dispersed seven types of metal particles via a newly developed swelling-impregnation method, including Ru, Pt, Au, Fe, Co, Ni, and Cu. Ru/PPhen is studied for 5-HMF hydrogenolysis, achieving a 92% yield of 2,5-dimethylfuran (DMF) under mild conditions, outperforming the state-of-the-art catalysts reported in the literature. In addition, PPhen helps perform a solventless reaction, achieving direct 5-HMF to DMF conversion in the absence of any liquid solvent or reagent. This approach in designing support-reactant/solvent/metal interactions will play an important role in surface catalysis.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda