Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Cell ; 185(23): 4347-4360.e17, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36335936

RESUMEN

Decoration of cap on viral RNA plays essential roles in SARS-CoV-2 proliferation. Here, we report a mechanism for SARS-CoV-2 RNA capping and document structural details at atomic resolution. The NiRAN domain in polymerase catalyzes the covalent link of RNA 5' end to the first residue of nsp9 (termed as RNAylation), thus being an intermediate to form cap core (GpppA) with GTP catalyzed again by NiRAN. We also reveal that triphosphorylated nucleotide analog inhibitors can be bonded to nsp9 and fit into a previously unknown "Nuc-pocket" in NiRAN, thus inhibiting nsp9 RNAylation and formation of GpppA. S-loop (residues 50-KTN-52) in NiRAN presents a remarkable conformational shift observed in RTC bound with sofosbuvir monophosphate, reasoning an "induce-and-lock" mechanism to design inhibitors. These findings not only improve the understanding of SARS-CoV-2 RNA capping and the mode of action of NAIs but also provide a strategy to design antiviral drugs.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN , Antivirales/química , Nucleótidos/química , Proteínas no Estructurales Virales/metabolismo
2.
Cell ; 184(13): 3474-3485.e11, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34143953

RESUMEN

The capping of mRNA and the proofreading play essential roles in SARS-CoV-2 replication and transcription. Here, we present the cryo-EM structure of the SARS-CoV-2 replication-transcription complex (RTC) in a form identified as Cap(0)-RTC, which couples a co-transcriptional capping complex (CCC) composed of nsp12 NiRAN, nsp9, the bifunctional nsp14 possessing an N-terminal exoribonuclease (ExoN) and a C-terminal N7-methyltransferase (N7-MTase), and nsp10 as a cofactor of nsp14. Nsp9 and nsp12 NiRAN recruit nsp10/nsp14 into the Cap(0)-RTC, forming the N7-CCC to yield cap(0) (7MeGpppA) at 5' end of pre-mRNA. A dimeric form of Cap(0)-RTC observed by cryo-EM suggests an in trans backtracking mechanism for nsp14 ExoN to facilitate proofreading of the RNA in concert with polymerase nsp12. These results not only provide a structural basis for understanding co-transcriptional modification of SARS-CoV-2 mRNA but also shed light on how replication fidelity in SARS-CoV-2 is maintained.


Asunto(s)
ARN Polimerasa Dependiente de ARN de Coronavirus/genética , Exorribonucleasas/genética , Metiltransferasas/genética , SARS-CoV-2/genética , Secuencia de Aminoácidos , COVID-19/virología , Humanos , ARN Mensajero/genética , ARN Viral/genética , Alineación de Secuencia , Transcripción Genética/genética , Replicación Viral/genética
3.
Cell ; 184(1): 184-193.e10, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33232691

RESUMEN

Transcription of SARS-CoV-2 mRNA requires sequential reactions facilitated by the replication and transcription complex (RTC). Here, we present a structural snapshot of SARS-CoV-2 RTC as it transitions toward cap structure synthesis. We determine the atomic cryo-EM structure of an extended RTC assembled by nsp7-nsp82-nsp12-nsp132-RNA and a single RNA-binding protein, nsp9. Nsp9 binds tightly to nsp12 (RdRp) NiRAN, allowing nsp9 N terminus inserting into the catalytic center of nsp12 NiRAN, which then inhibits activity. We also show that nsp12 NiRAN possesses guanylyltransferase activity, catalyzing the formation of cap core structure (GpppA). The orientation of nsp13 that anchors the 5' extension of template RNA shows a remarkable conformational shift, resulting in zinc finger 3 of its ZBD inserting into a minor groove of paired template-primer RNA. These results reason an intermediate state of RTC toward mRNA synthesis, pave a way to understand the RTC architecture, and provide a target for antiviral development.


Asunto(s)
ARN Polimerasa Dependiente de ARN de Coronavirus/química , Microscopía por Crioelectrón , ARN Mensajero/química , ARN Viral/química , SARS-CoV-2/química , Proteinas del Complejo de Replicasa Viral/química , Secuencia de Aminoácidos , Coronavirus/química , Coronavirus/clasificación , Coronavirus/enzimología , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Metiltransferasas/metabolismo , Modelos Moleculares , ARN Helicasas/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , SARS-CoV-2/enzimología , Alineación de Secuencia , Transcripción Genética , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Replicación Viral
4.
Cell ; 182(2): 417-428.e13, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32526208

RESUMEN

Nucleotide analog inhibitors, including broad-spectrum remdesivir and favipiravir, have shown promise in in vitro assays and some clinical studies for COVID-19 treatment, this despite an incomplete mechanistic understanding of the viral RNA-dependent RNA polymerase nsp12 drug interactions. Here, we examine the molecular basis of SARS-CoV-2 RNA replication by determining the cryo-EM structures of the stalled pre- and post- translocated polymerase complexes. Compared with the apo complex, the structures show notable structural rearrangements happening to nsp12 and its co-factors nsp7 and nsp8 to accommodate the nucleic acid, whereas there are highly conserved residues in nsp12, positioning the template and primer for an in-line attack on the incoming nucleotide. Furthermore, we investigate the inhibition mechanism of the triphosphate metabolite of remdesivir through structural and kinetic analyses. A transition model from the nsp7-nsp8 hexadecameric primase complex to the nsp12-nsp7-nsp8 polymerase complex is also proposed to provide clues for the understanding of the coronavirus transcription and replication machinery.


Asunto(s)
Betacoronavirus/química , Betacoronavirus/enzimología , ARN Polimerasa Dependiente del ARN/química , Proteínas no Estructurales Virales/química , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/química , Adenosina Monofosfato/metabolismo , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/química , Alanina/metabolismo , Alanina/farmacología , Antivirales/química , Antivirales/metabolismo , Antivirales/farmacología , Dominio Catalítico , ARN Polimerasa Dependiente de ARN de Coronavirus , Microscopía por Crioelectrón , Modelos Químicos , Modelos Moleculares , ARN Viral/metabolismo , SARS-CoV-2 , Transcripción Genética , Replicación Viral
5.
Cell ; 176(3): 636-648.e13, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30682372

RESUMEN

Despite intensive efforts to discover highly effective treatments to eradicate tuberculosis (TB), it remains as a major threat to global human health. For this reason, new TB drugs directed toward new targets are highly coveted. MmpLs (Mycobacterial membrane proteins Large), which play crucial roles in transporting lipids, polymers and immunomodulators and which also extrude therapeutic drugs, are among the most important therapeutic drug targets to emerge in recent times. Here, crystal structures of mycobacterial MmpL3 alone and in complex with four TB drug candidates, including SQ109 (in Phase 2b-3 clinical trials), are reported. MmpL3 consists of a periplasmic pore domain and a twelve-helix transmembrane domain. Two Asp-Tyr pairs centrally located in this domain appear to be key facilitators of proton-translocation. SQ109, AU1235, ICA38, and rimonabant bind inside the transmembrane region and disrupt these Asp-Tyr pairs. This structural data will greatly advance the development of MmpL3 inhibitors as new TB drugs.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/ultraestructura , Adamantano/análogos & derivados , Adamantano/metabolismo , Antituberculosos/química , Transporte Biológico , Sistemas de Liberación de Medicamentos , Diseño de Fármacos , Etilenodiaminas/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/ultraestructura , Compuestos de Fenilurea/metabolismo , Rimonabant/metabolismo , Tuberculosis/microbiología
6.
Mol Cell ; 83(12): 2137-2147.e4, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37244256

RESUMEN

Biological energy currency ATP is produced by F1Fo-ATP synthase. However, the molecular mechanism for human ATP synthase action remains unknown. Here, we present snapshot images for three main rotational states and one substate of human ATP synthase using cryoelectron microscopy. These structures reveal that the release of ADP occurs when the ß subunit of F1Fo-ATP synthase is in the open conformation, showing how ADP binding is coordinated during synthesis. The accommodation of the symmetry mismatch between F1 and Fo motors is resolved by the torsional flexing of the entire complex, especially the γ subunit, and the rotational substep of the c subunit. Water molecules are identified in the inlet and outlet half-channels, suggesting that the proton transfer in these two half-channels proceed via a Grotthus mechanism. Clinically relevant mutations are mapped to the structure, showing that they are mainly located at the subunit-subunit interfaces, thus causing instability of the complex.


Asunto(s)
Adenosina Trifosfato , ATPasas de Translocación de Protón , Humanos , Microscopía por Crioelectrón , Adenosina Trifosfato/metabolismo , ATPasas de Translocación de Protón/química , Conformación Proteica
7.
Nature ; 631(8020): 409-414, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38961288

RESUMEN

Bedaquiline (BDQ), a first-in-class diarylquinoline anti-tuberculosis drug, and its analogue, TBAJ-587, prevent the growth and proliferation of Mycobacterium tuberculosis by inhibiting ATP synthase1,2. However, BDQ also inhibits human ATP synthase3. At present, how these compounds interact with either M. tuberculosis ATP synthase or human ATP synthase is unclear. Here we present cryogenic electron microscopy structures of M. tuberculosis ATP synthase with and without BDQ and TBAJ-587 bound, and human ATP synthase bound to BDQ. The two inhibitors interact with subunit a and the c-ring at the leading site, c-only sites and lagging site in M. tuberculosis ATP synthase, showing that BDQ and TBAJ-587 have similar modes of action. The quinolinyl and dimethylamino units of the compounds make extensive contacts with the protein. The structure of human ATP synthase in complex with BDQ reveals that the BDQ-binding site is similar to that observed for the leading site in M. tuberculosis ATP synthase, and that the quinolinyl unit also interacts extensively with the human enzyme. This study will improve researchers' understanding of the similarities and differences between human ATP synthase and M. tuberculosis ATP synthase in terms of the mode of BDQ binding, and will allow the rational design of novel diarylquinolines as anti-tuberculosis drugs.


Asunto(s)
Antituberculosos , Diarilquinolinas , Imidazoles , ATPasas de Translocación de Protón Mitocondriales , Mycobacterium tuberculosis , Piperidinas , Piridinas , Humanos , Antituberculosos/farmacología , Antituberculosos/química , Sitios de Unión , Microscopía por Crioelectrón , Diarilquinolinas/química , Diarilquinolinas/farmacología , Imidazoles/química , Imidazoles/farmacología , ATPasas de Translocación de Protón Mitocondriales/antagonistas & inhibidores , ATPasas de Translocación de Protón Mitocondriales/química , ATPasas de Translocación de Protón Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/ultraestructura , Modelos Moleculares , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/efectos de los fármacos , Piperidinas/química , Piperidinas/farmacología , Subunidades de Proteína/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/antagonistas & inhibidores , Piridinas/química , Piridinas/farmacología
8.
Nature ; 586(7828): 317-321, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32640464

RESUMEN

Acetohydroxyacid synthase (AHAS), also known as acetolactate synthase, is a flavin adenine dinucleotide-, thiamine diphosphate- and magnesium-dependent enzyme that catalyses the first step in the biosynthesis of branched-chain amino acids1. It is the target for more than 50 commercial herbicides2. AHAS requires both catalytic and regulatory subunits for maximal activity and functionality. Here we describe structures of the hexadecameric AHAS complexes of Saccharomyces cerevisiae and dodecameric AHAS complexes of Arabidopsis thaliana. We found that the regulatory subunits of these AHAS complexes form a core to which the catalytic subunit dimers are attached, adopting the shape of a Maltese cross. The structures show how the catalytic and regulatory subunits communicate with each other to provide a pathway for activation and for feedback inhibition by branched-chain amino acids. We also show that the AHAS complex of Mycobacterium tuberculosis adopts a similar structure, thus demonstrating that the overall AHAS architecture is conserved across kingdoms.


Asunto(s)
Acetolactato Sintasa/química , Arabidopsis/enzimología , Saccharomyces cerevisiae/enzimología , Acetolactato Sintasa/metabolismo , Adenosina Trifosfato/metabolismo , Aminoácidos de Cadena Ramificada/biosíntesis , Dominio Catalítico , Activación Enzimática , Evolución Molecular , Retroalimentación Fisiológica , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Mycobacterium tuberculosis/enzimología , Unión Proteica , Conformación Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Valina/metabolismo
9.
Nature ; 582(7811): 289-293, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32272481

RESUMEN

A new coronavirus, known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the aetiological agent responsible for the 2019-2020 viral pneumonia outbreak of coronavirus disease 2019 (COVID-19)1-4. Currently, there are no targeted therapeutic agents for the treatment of this disease, and effective treatment options remain very limited. Here we describe the results of a programme that aimed to rapidly discover lead compounds for clinical use, by combining structure-assisted drug design, virtual drug screening and high-throughput screening. This programme focused on identifying drug leads that target main protease (Mpro) of SARS-CoV-2: Mpro is a key enzyme of coronaviruses and has a pivotal role in mediating viral replication and transcription, making it an attractive drug target for SARS-CoV-25,6. We identified a mechanism-based inhibitor (N3) by computer-aided drug design, and then determined the crystal structure of Mpro of SARS-CoV-2 in complex with this compound. Through a combination of structure-based virtual and high-throughput screening, we assayed more than 10,000 compounds-including approved drugs, drug candidates in clinical trials and other pharmacologically active compounds-as inhibitors of Mpro. Six of these compounds inhibited Mpro, showing half-maximal inhibitory concentration values that ranged from 0.67 to 21.4 µM. One of these compounds (ebselen) also exhibited promising antiviral activity in cell-based assays. Our results demonstrate the efficacy of our screening strategy, which can lead to the rapid discovery of drug leads with clinical potential in response to new infectious diseases for which no specific drugs or vaccines are available.


Asunto(s)
Betacoronavirus/química , Cisteína Endopeptidasas/química , Descubrimiento de Drogas/métodos , Modelos Moleculares , Inhibidores de Proteasas/química , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/química , Antivirales/química , Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , COVID-19 , Células Cultivadas/virología , Proteasas 3C de Coronavirus , Infecciones por Coronavirus/enzimología , Infecciones por Coronavirus/virología , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Humanos , Pandemias , Neumonía Viral/enzimología , Neumonía Viral/virología , Inhibidores de Proteasas/farmacología , Estructura Terciaria de Proteína , SARS-CoV-2
10.
Proc Natl Acad Sci U S A ; 120(35): e2307625120, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37603751

RESUMEN

Trehalose plays a crucial role in the survival and virulence of the deadly human pathogen Mycobacterium tuberculosis (Mtb). The type I ATP-binding cassette (ABC) transporter LpqY-SugABC is the sole pathway for trehalose to enter Mtb. The substrate-binding protein, LpqY, which forms a stable complex with the translocator SugABC, recognizes and captures trehalose and its analogues in the periplasmic space, but the precise molecular mechanism for this process is still not well understood. This study reports a 3.02-Å cryoelectron microscopy structure of trehalose-bound Mtb LpqY-SugABC in the pretranslocation state, a crystal structure of Mtb LpqY in a closed form with trehalose bound and five crystal structures of Mtb LpqY in complex with different trehalose analogues. These structures, accompanied by substrate-stimulated ATPase activity data, reveal how LpqY recognizes and binds trehalose and its analogues, and highlight the flexibility in the substrate binding pocket of LpqY. These data provide critical insights into the design of trehalose analogues that could serve as potential molecular probe tools or as anti-TB drugs.


Asunto(s)
Mycobacterium tuberculosis , Humanos , Microscopía por Crioelectrón , Trehalosa , Transportadoras de Casetes de Unión a ATP , Sondas Moleculares
11.
Proc Natl Acad Sci U S A ; 120(18): e2216713120, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37098072

RESUMEN

Human complex II is a key protein complex that links two essential energy-producing processes: the tricarboxylic acid cycle and oxidative phosphorylation. Deficiencies due to mutagenesis have been shown to cause mitochondrial disease and some types of cancers. However, the structure of this complex is yet to be resolved, hindering a comprehensive understanding of the functional aspects of this molecular machine. Here, we have determined the structure of human complex II in the presence of ubiquinone at 2.86 Å resolution by cryoelectron microscopy, showing it comprises two water-soluble subunits, SDHA and SDHB, and two membrane-spanning subunits, SDHC and SDHD. This structure allows us to propose a route for electron transfer. In addition, clinically relevant mutations are mapped onto the structure. This mapping provides a molecular understanding to explain why these variants have the potential to produce disease.


Asunto(s)
Estructura Cuaternaria de Proteína , Humanos , Modelos Moleculares , Mutación , Microscopía por Crioelectrón
12.
Proc Natl Acad Sci U S A ; 119(16): e2117142119, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35380892

RESUMEN

The main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a key enzyme, which extensively digests CoV replicase polyproteins essential for viral replication and transcription, making it an attractive target for antiviral drug development. However, the molecular mechanism of how Mpro of SARS-CoV-2 digests replicase polyproteins, releasing the nonstructural proteins (nsps), and its substrate specificity remain largely unknown. Here, we determine the high-resolution structures of SARS-CoV-2 Mpro in its resting state, precleavage state, and postcleavage state, constituting a full cycle of substrate cleavage. The structures show the delicate conformational changes that occur during polyprotein processing. Further, we solve the structures of the SARS-CoV-2 Mpro mutant (H41A) in complex with six native cleavage substrates from replicase polyproteins, and demonstrate that SARS-CoV-2 Mpro can recognize sequences as long as 10 residues but only have special selectivity for four subsites. These structural data provide a basis to develop potent new inhibitors against SARS-CoV-2.


Asunto(s)
Proteasas 3C de Coronavirus , ARN Polimerasa Dependiente de ARN de Coronavirus , SARS-CoV-2 , Antivirales/química , Proteasas 3C de Coronavirus/química , ARN Polimerasa Dependiente de ARN de Coronavirus/química , ARN Polimerasa Dependiente de ARN de Coronavirus/genética , Poliproteínas/química , Conformación Proteica , Proteolisis , SARS-CoV-2/enzimología , Especificidad por Sustrato/genética
13.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33876763

RESUMEN

Complex II, also known as succinate dehydrogenase (SQR) or fumarate reductase (QFR), is an enzyme involved in both the Krebs cycle and oxidative phosphorylation. Mycobacterial Sdh1 has recently been identified as a new class of respiratory complex II (type F) but with an unknown electron transfer mechanism. Here, using cryoelectron microscopy, we have determined the structure of Mycobacterium smegmatis Sdh1 in the presence and absence of the substrate, ubiquinone-1, at 2.53-Å and 2.88-Å resolution, respectively. Sdh1 comprises three subunits, two that are water soluble, SdhA and SdhB, and one that is membrane spanning, SdhC. Within these subunits we identified a quinone-binding site and a rarely observed Rieske-type [2Fe-2S] cluster, the latter being embedded in the transmembrane region. A mutant, where two His ligands of the Rieske-type [2Fe-2S] were changed to alanine, abolished the quinone reduction activity of the Sdh1. Our structures allow the proposal of an electron transfer pathway that connects the substrate-binding and quinone-binding sites. Given the unique features of Sdh1 and its essential role in Mycobacteria, these structures will facilitate antituberculosis drug discovery efforts that specifically target this complex.


Asunto(s)
Proteínas Bacterianas/química , Complejo III de Transporte de Electrones/química , Flavoproteínas/química , Mycobacterium tuberculosis/enzimología , Proteínas Bacterianas/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Complejo III de Transporte de Electrones/metabolismo , Flavoproteínas/metabolismo , Simulación de Dinámica Molecular , Unión Proteica , Ubiquinona/química , Ubiquinona/metabolismo
14.
Chemistry ; 29(9): e202203140, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36385513

RESUMEN

Enzyme-catalyzed reaction cascades play an increasingly important role for the sustainable manufacture of diverse chemicals from renewable feedstocks. For instance, dehydratases from the ilvD/EDD superfamily have been embedded into a cascade to convert glucose via pyruvate to isobutanol, a platform chemical for the production of aviation fuels and other valuable materials. These dehydratases depend on the presence of both a Fe-S cluster and a divalent metal ion for their function. However, they also represent the rate-limiting step in the cascade. Here, catalytic parameters and the crystal structure of the dehydratase from Paralcaligenes ureilyticus (PuDHT, both in presence of Mg2+ and Mn2+ ) were investigated. Rate measurements demonstrate that the presence of stoichiometric concentrations Mn2+ promotes higher activity than Mg2+ , but at high concentrations the former inhibits the activity of PuDHT. Molecular dynamics simulations identify the position of a second binding site for the divalent metal ion. Only binding of Mn2+ (not Mg2+ ) to this site affects the ligand environment of the catalytically essential divalent metal binding site, thus providing insight into an inhibitory mechanism of Mn2+ at higher concentrations. Furthermore, in silico docking identified residues that play a role in determining substrate binding and selectivity. The combined data inform engineering approaches to design an optimal dehydratase for the cascade.


Asunto(s)
Hidroliasas , Secuencia de Aminoácidos , Hidroliasas/química , Sitios de Unión , Catálisis
15.
Proc Natl Acad Sci U S A ; 117(28): 16324-16332, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32601219

RESUMEN

FadE, an acyl-CoA dehydrogenase, introduces unsaturation to carbon chains in lipid metabolism pathways. Here, we report that FadE5 from Mycobacterium tuberculosis (MtbFadE5) and Mycobacterium smegmatis (MsFadE5) play roles in drug resistance and exhibit broad specificity for linear acyl-CoA substrates but have a preference for those with long carbon chains. Here, the structures of MsFadE5 and MtbFadE5, in the presence and absence of substrates, have been determined. These reveal the molecular basis for the broad substrate specificity of these enzymes. FadE5 interacts with the CoA region of the substrate through a large number of hydrogen bonds and an unusual π-π stacking interaction, allowing these enzymes to accept both short- and long-chain substrates. Residues in the substrate binding cavity reorient their side chains to accommodate substrates of various lengths. Longer carbon-chain substrates make more numerous hydrophobic interactions with the enzyme compared with the shorter-chain substrates, resulting in a preference for this type of substrate.


Asunto(s)
Acil-CoA Deshidrogenasa/química , Acil-CoA Deshidrogenasa/metabolismo , Mycobacterium/enzimología , Acilcoenzima A/metabolismo , Acil-CoA Deshidrogenasa/genética , Antibacterianos/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Dominio Catalítico , Farmacorresistencia Bacteriana/genética , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Modelos Moleculares , Mutación , Mycobacterium/efectos de los fármacos , Mycobacterium/genética , Conformación Proteica , Relación Estructura-Actividad , Especificidad por Sustrato
16.
Chemistry ; 27(9): 3130-3141, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33215746

RESUMEN

New drugs aimed at novel targets are urgently needed to combat the increasing rate of drug-resistant tuberculosis (TB). Herein, the National Cancer Institute Developmental Therapeutic Program (NCI-DTP) chemical library was screened against a promising new target, ketol-acid reductoisomerase (KARI), the second enzyme in the branched-chain amino acid (BCAA) biosynthesis pathway. From this library, 6-hydroxy-2-methylthiazolo[4,5-d]pyrimidine-5,7(4H,6H)-dione (NSC116565) was identified as a potent time-dependent inhibitor of Mycobacterium tuberculosis (Mt) KARI with a Ki of 95.4 nm. Isothermal titration calorimetry studies showed that this inhibitor bound to MtKARI in the presence and absence of the cofactor, nicotinamide adenine dinucleotide phosphate (NADPH), which was confirmed by crystal structures of the compound in complex with closely related Staphylococcus aureus KARI. It is also shown that NSC116565 inhibits the growth of H37Ra and H37Rv strains of Mt with MIC50 values of 2.93 and 6.06 µm, respectively. These results further validate KARI as a TB drug target and show that NSC116565 is a promising lead for anti-TB drug development.


Asunto(s)
Antituberculosos/farmacología , Cetoácido Reductoisomerasa/antagonistas & inhibidores , Mycobacterium tuberculosis/enzimología , Pirimidinonas/farmacología , Línea Celular , Humanos , Cetoácido Reductoisomerasa/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , NADP/metabolismo , Staphylococcus aureus/enzimología , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología
17.
Proc Natl Acad Sci U S A ; 115(9): E1945-E1954, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29440497

RESUMEN

Acetohydroxyacid synthase (AHAS), the first enzyme in the branched amino acid biosynthesis pathway, is present only in plants and microorganisms, and it is the target of >50 commercial herbicides. Penoxsulam (PS), which is a highly effective broad-spectrum AHAS-inhibiting herbicide, is used extensively to control weed growth in rice crops. However, the molecular basis for its inhibition of AHAS is poorly understood. This is despite the availability of structural data for all other classes of AHAS-inhibiting herbicides. Here, crystallographic data for Saccharomyces cerevisiae AHAS (2.3 Å) and Arabidopsis thaliana AHAS (2.5 Å) in complex with PS reveal the extraordinary molecular mechanisms that underpin its inhibitory activity. The structures show that inhibition of AHAS by PS triggers expulsion of two molecules of oxygen bound in the active site, releasing them as substrates for an oxygenase side reaction of the enzyme. The structures also show that PS either stabilizes the thiamin diphosphate (ThDP)-peracetate adduct, a product of this oxygenase reaction, or traps within the active site an intact molecule of peracetate in the presence of a degraded form of ThDP: thiamine aminoethenethiol diphosphate. Kinetic analysis shows that PS inhibits AHAS by a combination of events involving FAD oxidation and chemical alteration of ThDP. With the emergence of increasing levels of resistance toward front-line herbicides and the need to optimize the use of arable land, these data suggest strategies for next generation herbicide design.


Asunto(s)
Acetolactato Sintasa/antagonistas & inhibidores , Acetolactato Sintasa/química , Herbicidas/química , Oxígeno/química , Especies Reactivas de Oxígeno/química , Arabidopsis/enzimología , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Modelos Moleculares , Unión Proteica , Saccharomyces cerevisiae/enzimología , Temperatura , Tiamina Pirofosfato/química
18.
Proc Natl Acad Sci U S A ; 115(41): E9649-E9658, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30249642

RESUMEN

The increased prevalence of drug-resistant human pathogenic fungal diseases poses a major threat to global human health. Thus, new drugs are urgently required to combat these infections. Here, we demonstrate that acetohydroxyacid synthase (AHAS), the first enzyme in the branched-chain amino acid biosynthesis pathway, is a promising new target for antifungal drug discovery. First, we show that several AHAS inhibitors developed as commercial herbicides are powerful accumulative inhibitors of Candida albicans AHAS (Ki values as low as 800 pM) and have determined high-resolution crystal structures of this enzyme in complex with several of these herbicides. In addition, we have demonstrated that chlorimuron ethyl (CE), a member of the sulfonylurea herbicide family, has potent antifungal activity against five different Candida species and Cryptococcus neoformans (with minimum inhibitory concentration, 50% values as low as 7 nM). Furthermore, in these assays, we have shown CE and itraconazole (a P450 inhibitor) can act synergistically to further improve potency. Finally, we show in Candida albicans-infected mice that CE is highly effective in clearing pathogenic fungal burden in the lungs, liver, and spleen, thus reducing overall mortality rates. Therefore, in view of their low toxicity to human cells, AHAS inhibitors represent a new class of antifungal drug candidates.


Asunto(s)
Acetolactato Sintasa , Antifúngicos , Candida albicans/enzimología , Candidiasis , Criptococosis , Cryptococcus neoformans/enzimología , Proteínas Fúngicas , Acetolactato Sintasa/antagonistas & inhibidores , Acetolactato Sintasa/química , Acetolactato Sintasa/metabolismo , Animales , Antifúngicos/química , Antifúngicos/farmacología , Candidiasis/tratamiento farmacológico , Candidiasis/enzimología , Criptococosis/tratamiento farmacológico , Criptococosis/enzimología , Proteínas Fúngicas/antagonistas & inhibidores , Proteínas Fúngicas/química , Herbicidas/química , Herbicidas/farmacología , Humanos , Ratones
19.
Chemistry ; 26(41): 8958-8968, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32198779

RESUMEN

Ketol-acid reductoisomerase (KARI), the second enzyme in the branched-chain amino acid biosynthesis pathway, is a potential drug target for bacterial infections including Mycobacterium tuberculosis. Here, we have screened the Medicines for Malaria Venture Pathogen Box against purified M. tuberculosis (Mt) KARI and identified two compounds that have Ki values below 200 nm. In Mt cell susceptibility assays one of these compounds exhibited an IC50 value of 0.8 µm. Co-crystallization of this compound, 3-((methylsulfonyl)methyl)-2H-benzo[b][1,4]oxazin-2-one (MMV553002), in complex with Staphylococcus aureus KARI, which has 56 % identity with Mt KARI, NADPH and Mg2+ yielded a structure to 1.72 Šresolution. However, only a hydrolyzed product of the inhibitor (i.e. 3-(methylsulfonyl)-2-oxopropanic acid, missing the 2-aminophenol attachment) is observed in the active site. Surprisingly, Mt cell susceptibility assays showed that the 2-aminophenol product is largely responsible for the anti-TB activity of the parent compound. Thus, 3-(methylsulfonyl)-2-oxopropanic acid was identified as a potent KARI inhibitor that could be further explored as a potential biocidal agent and we have shown 2-aminophenol, as an anti-TB drug lead, especially given it has low toxicity against human cells. The study highlights that careful analysis of broad screening assays is required to correctly interpret cell-based activity data.


Asunto(s)
Cetoácido Reductoisomerasa/metabolismo , Magnesio/química , Mycobacterium tuberculosis/enzimología , NADP/química , Staphylococcus aureus/metabolismo , Dominio Catalítico , Cristalización , Cristalografía por Rayos X , Humanos , Cetoácido Reductoisomerasa/química , Mycobacterium tuberculosis/química , NADP/metabolismo , Staphylococcus aureus/química
20.
Arch Biochem Biophys ; 692: 108516, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32745463

RESUMEN

Ketol-acid reductoisomerase (KARI), the second enzyme in the branched-chain amino acid (BCAA) biosynthesis pathway, is an emerging target for the discovery of biocides. Here, we demonstrate that cyclopropane-1,1-dicarboxylate (CPD) inhibits KARIs from the pathogens Mycobacterium tuberculosis (Mt) and Campylobacter jejuni (Cj) reversibly with Ki values of 3.03 µM and 0.59 µM, respectively. Another reversible inhibitor of both KARIs, Hoe 704, is more potent than CPD with Ki values of 300 nM and 110 nM for MtKARI and CjKARI, respectively. The most potent inhibitor tested here is N-hydroxy-N-isopropyloxamate (IpOHA). It has a Ki of ~26 nM for MtKARI, but binds rather slowly (kon ~900 M-1s-1). In contrast, IpOHA binds more rapidly (kon ~7000 M-1s-1) to CjKARI and irreversibly.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Campylobacter jejuni/enzimología , Inhibidores Enzimáticos/química , Cetoácido Reductoisomerasa/antagonistas & inhibidores , Mycobacterium tuberculosis/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Campylobacter jejuni/química , Ciclopropanos/química , Ácidos Dicarboxílicos/química , Ácidos Hidroxámicos/química , Cetoácido Reductoisomerasa/química , Cetoácido Reductoisomerasa/metabolismo , Mycobacterium tuberculosis/química , Compuestos Organofosforados/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda