Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Proc Natl Acad Sci U S A ; 110(9): 3276-81, 2013 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-23401549

RESUMEN

This paper describes two folded metamaterials based on the Miura-ori fold pattern. The structural mechanics of these metamaterials are dominated by the kinematics of the folding, which only depends on the geometry and therefore is scale-independent. First, a folded shell structure is introduced, where the fold pattern provides a negative Poisson's ratio for in-plane deformations and a positive Poisson's ratio for out-of-plane bending. Second, a cellular metamaterial is described based on a stacking of individual folded layers, where the folding kinematics are compatible between layers. Additional freedom in the design of the metamaterial can be achieved by varying the fold pattern within each layer.

2.
Proc Math Phys Eng Sci ; 478(2258): 20210589, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35173518

RESUMEN

In this article, rigid origami is examined from the perspective of rigidity theory. First- and second-order rigidity are defined from local differential analysis of the consistency constraint; while the static rigidity and prestress stability are defined after finding the form of internal force and load. We will show the hierarchical relation among these local rigidities with examples representing different levels. The development of theory here follows the same path as the conventional rigidity theory for bar-joint frameworks, but starts with different high-order rotational constraints. We also bring new interpretation to the internal force and geometric error of constraints associated with energy. Examining the different aspects of the rigidity of origami might give a novel perspective for the development of new folding patterns, or for the design of origami structures where some rigidity is required.

3.
PLoS One ; 9(4): e95695, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24759936

RESUMEN

Mechanics has an important role during morphogenesis, both in the generation of forces driving cell shape changes and in determining the effective material properties of cells and tissues. Drosophila dorsal closure has emerged as a reference model system for investigating the interplay between tissue mechanics and cellular activity. During dorsal closure, the amnioserosa generates one of the major forces that drive closure through the apical contraction of its constituent cells. We combined quantitation of live data, genetic and mechanical perturbation and cell biology, to investigate how mechanical properties and contraction rate emerge from cytoskeletal activity. We found that a decrease in Myosin phosphorylation induces a fluidization of amnioserosa cells which become more compliant. Conversely, an increase in Myosin phosphorylation and an increase in actin linear polymerization induce a solidification of cells. Contrary to expectation, these two perturbations have an opposite effect on the strain rate of cells during DC. While an increase in actin polymerization increases the contraction rate of amnioserosa cells, an increase in Myosin phosphorylation gives rise to cells that contract very slowly. The quantification of how the perturbation induced by laser ablation decays throughout the tissue revealed that the tissue in these two mutant backgrounds reacts very differently. We suggest that the differences in the strain rate of cells in situations where Myosin activity or actin polymerization is increased arise from changes in how the contractile forces are transmitted and coordinated across the tissue through ECadherin-mediated adhesion. Altogether, our results show that there is an optimal level of Myosin activity to generate efficient contraction and suggest that the architecture of the actin cytoskeleton and the dynamics of adhesion complexes are important parameters for the emergence of coordinated activity throughout the tissue.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Proteínas de Drosophila/metabolismo , Células Epiteliales/metabolismo , Miosinas/metabolismo , Animales , Drosophila , Modelos Lineales , Fosforilación
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda