Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
BMC Plant Biol ; 19(1): 135, 2019 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-30971226

RESUMEN

BACKGROUND: The floral transition is a complex developmental event, fine-tuned by various environmental and endogenous cues to ensure the success of offspring production. Leaves are key organs in sensing floral inductive signals, such as a change in light regime, and in the production of the mobile florigen. CONSTANS and FLOWERING LOCUS T are major players in leaves in response to photoperiod. Morphological and molecular events during the floral transition have been intensively studied in the shoot apical meristem. To better understand the concomitant processes in leaves, which are less described, we investigated the nuclear changes in fully developed leaves during the time course of the floral transition. RESULTS: We highlighted new putative regulatory candidates of flowering in leaves. We observed differential expression profiles of genes related to cellular, hormonal and metabolic actions, but also of genes encoding long non-coding RNAs and new natural antisense transcripts. In addition, we detected a significant increase in ploidy level during the floral transition, indicating endoreduplication. CONCLUSIONS: Our data indicate that differentiated mature leaves, possess physiological plasticity and undergo extensive nuclear reprogramming during the floral transition. The dynamic events point at functionally related networks of transcription factors and novel regulatory motifs, but also complex hormonal and metabolic changes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Reprogramación Celular/genética , Endorreduplicación/genética , Florigena/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Flores/fisiología , Flores/efectos de la radiación , Regulación de la Expresión Génica de las Plantas , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/fisiología , Meristema/efectos de la radiación , Fotoperiodo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Nucleic Acids Res ; 43(Database issue): D1010-7, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25392409

RESUMEN

CATdb (http://urgv.evry.inra.fr/CATdb) is a database providing a public access to a large collection of transcriptomic data, mainly for Arabidopsis but also for other plants. This resource has the rare advantage to contain several thousands of microarray experiments obtained with the same technical protocol and analyzed by the same statistical pipelines. In this paper, we present GEM2Net, a new module of CATdb that takes advantage of this homogeneous dataset to mine co-expression units and decipher Arabidopsis gene functions. GEM2Net explores 387 stress conditions organized into 18 biotic and abiotic stress categories. For each one, a model-based clustering is applied on expression differences to identify clusters of co-expressed genes. To characterize functions associated with these clusters, various resources are analyzed and integrated: Gene Ontology, subcellular localization of proteins, Hormone Families, Transcription Factor Families and a refined stress-related gene list associated to publications. Exploiting protein-protein interactions and transcription factors-targets interactions enables to display gene networks. GEM2Net presents the analysis of the 18 stress categories, in which 17,264 genes are involved and organized within 681 co-expression clusters. The meta-data analyses were stored and organized to compose a dynamic Web resource.


Asunto(s)
Arabidopsis/genética , Bases de Datos Genéticas , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Estrés Fisiológico/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Perfilación de la Expresión Génica , Internet , Modelos Genéticos , Mapeo de Interacción de Proteínas
3.
Int J Cancer ; 132(9): 2217-21, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23047306

RESUMEN

In eukaryotic cells, DNA is packaged into chromatin and this compact storage in the nucleus promotes transcriptional repression of genes. Chromatin remodeling complexes such as the SWI/SNF complex are involved in making DNA accessible to transcription factors and thereby are implicated in the regulation of gene expression. Mutations and altered expression of chromatin remodeling complex genes have been described in cancer cells. Indeed, non-small cell lung cancer cell lines have been shown to harbor mutations in SMARCA4 (BRG1), a member of the SWI/SNF complex, but evidence has been less clear in primary tumors. Recently, inactivating mutations in AT-rich interaction domain 2 (ARID2) were found in liver cancer related to HCV infection and in melanoma. Here, we explored, using a genome-wide strategy and subsequent sequencing of targeted genes, whether chromatin remodeling is implicated in primary lung adenocarcinoma. Two genes were individualized from the genome screening as homozygously deleted in a set of samples: JARID2 and ARID2. Subsequent analysis of the entire coding sequences showed that ARID2 loss-of-function mutations were found in 5% of nonsmall cell lung cancers, thereby constituting one of the most frequently mutated genes in this cancer type after TP53, KRAS, EGFR, CDKN2A and STK11.


Asunto(s)
Adenocarcinoma Bronquioloalveolar/genética , Biomarcadores de Tumor/genética , Carcinoma de Células Grandes/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/genética , Mutación/genética , Factores de Transcripción/genética , Adenocarcinoma Bronquioloalveolar/patología , Adulto , Anciano , Secuencia de Bases , Carcinoma de Células Grandes/patología , Carcinoma de Pulmón de Células no Pequeñas/patología , Ensamble y Desensamble de Cromatina , ADN de Neoplasias/genética , Femenino , Perfilación de la Expresión Génica , Humanos , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Estadificación de Neoplasias , Análisis de Secuencia por Matrices de Oligonucleótidos , Complejo Represivo Polycomb 2/genética , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple/genética , Pronóstico , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
4.
Nucleic Acids Res ; 39(19): 8544-58, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21737432

RESUMEN

Prion diseases are unique neurodegenerative illnesses associated with the conversion of the cellular prion protein (PrP(C)) into the aggregated misfolded scrapie isoform, named PrP(Sc). Recent studies on the physiological role of PrP(C) revealed that this protein has probably multiple functions, notably in cell-cell adhesion and signal transduction, and in assisting nucleic acid folding. In fact, in vitro findings indicated that the human PrP (huPrP) possesses nucleic acid binding and annealing activities, similarly to nucleic acid chaperone proteins that play essential roles in cellular DNA and RNA metabolism. Here, we show that a peptide, representing the N-terminal domain of huPrP, facilitates nucleic acid annealing by two parallel pathways nucleated through the stem termini. We also show that PrP of human or ovine origin facilitates DNA strand exchange, ribozyme-directed cleavage of an RNA template and RNA trans-splicing in a manner similar to the nucleocapsid protein of HIV-1. In an attempt to characterize inhibitors of PrP-chaperoning in vitro we discovered that the thioaptamer 5'-GACACAAGCCGA-3' was extensively inhibiting the PrP chaperoning activities. At the same time a recently characterized methylated oligoribonucleotide inhibiting the chaperoning activity of the HIV-1 nucleocapsid protein was poorly impairing the PrP chaperoning activities.


Asunto(s)
Aptámeros de Nucleótidos/farmacología , ADN/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas PrPC/metabolismo , ARN/metabolismo , Animales , ADN Viral/química , ADN Viral/metabolismo , Humanos , Cinética , Chaperonas Moleculares/antagonistas & inhibidores , Chaperonas Moleculares/química , Péptidos/metabolismo , Proteínas PrPC/antagonistas & inhibidores , Proteínas PrPC/química , ARN Catalítico/metabolismo , Ovinos , Trans-Empalme
5.
Front Plant Sci ; 13: 976371, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36311095

RESUMEN

Identification of cis-regulatory sequences controlling gene expression is an arduous challenge that is being actively explored to discover key genetic factors responsible for traits of agronomic interest. Here, we used a genome-wide de novo approach to investigate preferentially located motifs (PLMs) in the proximal cis-regulatory landscape of Arabidopsis thaliana and Zea mays. We report three groups of PLMs in both the 5'- and 3'-gene-proximal regions and emphasize conserved PLMs in both species, particularly in the 3'-gene-proximal region. Comparison with resources from transcription factor and microRNA binding sites shows that 79% of the identified PLMs are unassigned, although some are supported by MNase-defined cistrome occupancy analysis. Enrichment analyses further reveal that unassigned PLMs provide functional predictions that differ from those derived from transcription factor and microRNA binding sites. Our study provides a comprehensive map of PLMs and demonstrates their potential utility for future characterization of orphan genes in plants.

6.
J Pathol ; 221(3): 264-74, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20527020

RESUMEN

In hepatocytes, the accumulation of unfolded proteins in the endoplasmic reticulum (ER) causes ER stress and the unfolded protein response (UPR), mediated by the ER-resident stress sensors ATF-6, IRE1, and PERK. UPR-responsive genes are involved in the fate of ER-stressed cells. Cells carrying hepatitis C virus (HCV) subgenomic replicons exhibit in vitro ER stress and suggest that HCV inhibits the UPR. Since in vivo ER homeostasis is unknown in livers with chronic HCV infection, we investigated ER stress and the UPR in liver samples from untreated patients with chronic hepatitis C (CHC), in comparison with normal livers. Electron microscopy, western blotting, and real-time RT-PCR were used in liver biopsy specimens. Electron microscopy identified features showing ER stress in hepatocyte samples from patients with CHC; however, 'ER-stressed' hepatocytes were found in clusters (3-5 cells) that were scattered in the liver parenchyma. Western blot analysis confirmed the existence of hepatic ER stress by showing activation of the three ER stress sensors ATF-6, IRE1, and PERK in CHC. Real-time RT-PCR showed no significant induction of UPR-responsive genes in CHC. In contrast, genes involved in the control of diffuse processes such as liver proliferation, inflammation, and apoptosis were significantly induced in CHC. In conclusion, livers from patients with untreated CHC exhibit in vivo hepatocyte ER stress and activation of the three UPR sensors without apparent induction of UPR-responsive genes. This lack of gene induction may be explained by the inhibiting action of HCV per se (as suggested by in vitro studies) and/or by our finding of the localized nature of hepatocyte ER stress.


Asunto(s)
Retículo Endoplásmico/ultraestructura , Hepatitis C Crónica/patología , Hepatocitos/ultraestructura , Factor de Transcripción Activador 6/metabolismo , Adulto , Apoptosis/genética , Proliferación Celular , Retículo Endoplásmico/metabolismo , Endorribonucleasas/metabolismo , Femenino , Regulación de la Expresión Génica/fisiología , Hepatitis C Crónica/metabolismo , Hepatitis C Crónica/fisiopatología , Hepatocitos/metabolismo , Humanos , Cirrosis Hepática/patología , Cirrosis Hepática/fisiopatología , Cirrosis Hepática/virología , Masculino , Proteínas de la Membrana/metabolismo , Microscopía Electrónica , Persona de Mediana Edad , Proteínas Serina-Treonina Quinasas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Transducción de Señal/fisiología , Estrés Fisiológico/fisiología , Respuesta de Proteína Desplegada/genética , Respuesta de Proteína Desplegada/fisiología , eIF-2 Quinasa/metabolismo
7.
BMC Plant Biol ; 10: 284, 2010 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-21176183

RESUMEN

BACKGROUND: Unlike in tomato, little is known about the genetic and molecular control of fleshy fruit development of perennial fruit trees like grapevine (Vitis vinifera L.). Here we present the study of the sequence polymorphism in a 1 Mb grapevine genome region at the top of chromosome 18 carrying the fleshless berry mutation (flb) in order, first to identify SNP markers closely linked to the gene and second to search for possible signatures of domestication. RESULTS: In total, 62 regions (17 SSR, 3 SNP, 1 CAPS and 41 re-sequenced gene fragments) were scanned for polymorphism along a 3.4 Mb interval (85,127-3,506,060 bp) at the top of the chromosome 18, in both V. vinifera cv. Chardonnay and a genotype carrying the flb mutation, V. vinifera cv. Ugni Blanc mutant. A nearly complete homozygosity in Ugni Blanc (wild and mutant forms) and an expected high level of heterozygosity in Chardonnay were revealed. Experiments using qPCR and BAC FISH confirmed the observed homozygosity. Under the assumption that flb could be one of the genes involved into the domestication syndrome of grapevine, we sequenced 69 gene fragments, spread over the flb region, representing 48,874 bp in a highly diverse set of cultivated and wild V. vinifera genotypes, to identify possible signatures of domestication in the cultivated V. vinifera compartment. We identified eight gene fragments presenting a significant deviation from neutrality of the Tajima's D parameter in the cultivated pool. One of these also showed higher nucleotide diversity in the wild compartments than in the cultivated compartments. In addition, SNPs significantly associated to berry weight variation were identified in the flb region. CONCLUSIONS: We observed the occurrence of a large homozygous region in a non-repetitive region of the grapevine otherwise highly-heterozygous genome and propose a hypothesis for its formation. We demonstrated the feasibility to apply BAC FISH on the very small grapevine chromosomes and provided a specific probe for the identification of chromosome 18 on a cytogenetic map. We evidenced genes showing putative signatures of selection and SNPs significantly associated with berry weight variation in the flb region. In addition, we provided to the community 554 SNPs at the top of chromosome 18 for the development of a genotyping chip for future fine mapping of the flb gene in a F2 population when available.


Asunto(s)
Cromosomas de las Plantas/genética , Mutación , Polimorfismo Genético , Vitis/genética , Mapeo Cromosómico , Sitios Genéticos/genética , Variación Genética , Genotipo , Hibridación Fluorescente in Situ , Desequilibrio de Ligamiento , Repeticiones de Microsatélite/genética , Polimorfismo de Nucleótido Simple , Especificidad de la Especie , Sintenía , Vitis/clasificación
8.
Hepatology ; 49(1): 175-84, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19053046

RESUMEN

UNLABELLED: High-density lipoproteins (HDL) are known to neutralize lipopolysaccharide (LPS). Because patients with cirrhosis have lower HDL levels, this may contribute to LPS-induced ex vivo monocyte overproduction of proinflammatory cytokines. However, the effects of HDL on cytokine production by monocytes from patients with cirrhosis have never been studied. The aim of this study was to determine the effects of HDL on LPS-induced proinflammatory cytokine production in whole blood and isolated monocytes from patients with severe cirrhosis and controls. Plasma levels of HDL and cytokines were determined. The effects of reconstituted HDL (rHDL) on LPS-induced cytokine production in whole blood were assessed by cytokine array and on tumor necrosis factor alpha (TNF-alpha) and interleukin-10 (IL-10) production in isolated monocytes. Plasma HDL levels were significantly lower in patients with cirrhosis than in controls. Plasma levels of TNF-alpha and IL-6 were significantly higher in patients with cirrhosis than in controls. Incubation of rHDL with whole blood prevented LPS-induced TNF-alpha and IL-6 overproduction in patients with cirrhosis. LPS-induced TNF-alpha production and CD14 expression were significantly more marked in cirrhotic monocytes than in control monocytes, and both decreased significantly after rHDL incubation. LPS-induced down-regulation of scavenger receptor, class B, type I (SR-BI) expression was abolished in cirrhotic monocytes. CONCLUSIONS: This study shows that rHDL abolishes the LPS-induced overproduction of proinflammatory cytokines in whole blood from patients with severe cirrhosis. These results were confirmed in isolated monocytes from these patients. This suggests that administration of rHDL might be a useful strategy for the treatment of cirrhosis to limit LPS-induced cytokine overproduction.


Asunto(s)
Citocinas/biosíntesis , Inflamación/inducido químicamente , Lipopolisacáridos/farmacología , Lipoproteínas HDL/farmacología , Cirrosis Hepática/fisiopatología , Adulto , Colesterol/sangre , Femenino , Humanos , Interleucina-10/biosíntesis , Receptores de Lipopolisacáridos/biosíntesis , Lipoproteínas HDL/uso terapéutico , Cirrosis Hepática/sangre , Cirrosis Hepática/tratamiento farmacológico , Masculino , Persona de Mediana Edad , Monocitos/efectos de los fármacos , Monocitos/metabolismo , FN-kappa B/fisiología , Receptores Depuradores de Clase B/biosíntesis , Factor de Necrosis Tumoral alfa/biosíntesis
9.
Hepatol Res ; 39(7): 706-15, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19473436

RESUMEN

AIM: In patients with advanced cirrhosis, little is known about the ability of peripheral blood monocytes to spontaneously produce signaling proteins such as cytokines. The aim of this ex vivo study was to evaluate cytokine production under baseline conditions and after stimulation by lipopolysaccharide (LPS), a toll-like receptor (TLR) agonist. METHODS: Peripheral blood monocytes were isolated from patients with advanced alcoholic cirrhosis (without ongoing bacterial infections) and normal subjects. Cells were left unstimulated or were stimulated with LPS. The abundance of 24 cytokines was measured using a filter-based, arrayed sandwich enzyme-linked immunosorbent assay (ELISA) in the supernatant of cultured monocytes. RESULTS: Cirrhotic monocytes spontaneously produced six proteins (TNF-alpha, IL-6, IL-8, MCP-1, RANTES and Gro), whereas normal monocytes produced only small amounts of IL-8 and RANTES. Analyses with the online gene set analysis toolkit WebGestalt (http://bioinfo.vanderbilt.edu/webgestalt) found enrichment for the six proteins in the human gene ontology subcategory (http://www.geneontology.org), Kyoto Encyclopedia of Genes and Genome pathways (http://www.genome.ad.jp/kegg/) and BioCarta pathways (http://www.biocarta.com/genes/index.asp) consistent with a proinflammatory phenotype of cirrhotic monocytes resulting from activated TLR signaling. Interestingly, LPS-elicited TLR engagement further increased the production of the six proteins and did not induce the secretion of any others, in particular the anti-inflammatory cytokine IL-10. LPS-stimulated normal monocytes produced TNF-alpha, IL-6, IL-8, MCP-1, RANTES, Gro and IL-10. CONCLUSION: In patients with advanced cirrhosis, peripheral blood monocytes spontaneously produce proinflammatory cytokines, presumably in response to unrestricted TLR signaling.

10.
PLoS One ; 14(12): e0227011, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31891625

RESUMEN

Understanding the mechanisms triggering variation of cell wall degradability is a prerequisite to improving the energy value of lignocellulosic biomass for animal feed or biorefinery. Here, we implemented a multiscale systems approach to shed light on the genetic basis of cell wall degradability in maize. We demonstrated that allele replacement in two pairs of near-isogenic lines at a region encompassing a major quantitative trait locus (QTL) for cell wall degradability led to phenotypic variation of a similar magnitude and sign to that expected from a QTL analysis of cell wall degradability in the F271 × F288 recombinant inbred line progeny. Using DNA sequences within the QTL interval of both F271 and F288 inbred lines and Illumina RNA sequencing datasets from internodes of the selected near-isogenic lines, we annotated the genes present in the QTL interval and provided evidence that allelic variation at the introgressed QTL region gives rise to coordinated changes in gene expression. The identification of a gene co-expression network associated with cell wall-related trait variation revealed that the favorable F288 alleles exploit biological processes related to oxidation-reduction, regulation of hydrogen peroxide metabolism, protein folding and hormone responses. Nested in modules of co-expressed genes, potential new cell-wall regulators were identified, including two transcription factors of the group VII ethylene response factor family, that could be exploited to fine-tune cell wall degradability. Overall, these findings provide new insights into the regulatory mechanisms by which a major locus influences cell wall degradability, paving the way for its map-based cloning in maize.


Asunto(s)
Alimentación Animal , Pared Celular/metabolismo , Redes Reguladoras de Genes , Sitios de Carácter Cuantitativo , Zea mays/genética , Alelos , Pared Celular/genética , Celulosa/metabolismo , Mapeo Cromosómico , Conjuntos de Datos como Asunto , Genoma de Planta , Peróxido de Hidrógeno/metabolismo , Lignina/metabolismo , Oxidación-Reducción , Fitomejoramiento , Plantas Modificadas Genéticamente , Pliegue de Proteína , RNA-Seq , Biología de Sistemas , Zea mays/citología
11.
BMC Plant Biol ; 8: 66, 2008 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-18554400

RESUMEN

BACKGROUND: Whole-genome physical maps facilitate genome sequencing, sequence assembly, mapping of candidate genes, and the design of targeted genetic markers. An automated protocol was used to construct a Vitis vinifera 'Cabernet Sauvignon' physical map. The quality of the result was addressed with regard to the effect of high heterozygosity on the accuracy of contig assembly. Its usefulness for the genome-wide mapping of genes for disease resistance, which is an important trait for grapevine, was then assessed. RESULTS: The physical map included 29,727 BAC clones assembled into 1,770 contigs, spanning 715,684 kbp, and corresponding to 1.5-fold the genome size. Map inflation was due to high heterozygosity, which caused either the separation of allelic BACs in two different contigs, or local mis-assembly in contigs containing BACs from the two haplotypes. Genetic markers anchored 395 contigs or 255,476 kbp to chromosomes. The fully automated assembly and anchorage procedures were validated by BAC-by-BAC blast of the end sequences against the grape genome sequence, unveiling 7.3% of chimerical contigs. The distribution across the physical map of candidate genes for non-host and host resistance, and for defence signalling pathways was then studied. NBS-LRR and RLK genes for host resistance were found in 424 contigs, 133 of them (32%) were assigned to chromosomes, on which they are mostly organised in clusters. Non-host and defence signalling genes were found in 99 contigs dispersed without a discernable pattern across the genome. CONCLUSION: Despite some limitations that interfere with the correct assembly of heterozygous clones into contigs, the 'Cabernet Sauvignon' physical map is a useful and reliable intermediary step between a genetic map and the genome sequence. This tool was successfully exploited for a quick mapping of complex families of genes, and it strengthened previous clues of co-localisation of major NBS-LRR clusters and disease resistance loci in grapevine.


Asunto(s)
Genoma de Planta , Mapeo Físico de Cromosoma/métodos , Enfermedades de las Plantas/genética , Vitis/genética , Cromosomas de las Plantas/genética , Genes de Plantas/genética , Heterocigoto , Inmunidad Innata/genética , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , Transducción de Señal/genética
12.
Hepatology ; 46(6): 1893-906, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17918268

RESUMEN

UNLABELLED: In patients with cirrhosis, endotoxic shock is a major complication of portal hypertension, which is related partly to intrahepatic endothelial nitric oxide synthase (eNOS) down-regulation. High-density lipoproteins (HDLs), whose plasma levels are reduced in cirrhosis, have an anti-inflammatory effect by neutralizing circulating lipopolysaccharide (LPS), and they increase eNOS activity in endothelial cells. Therefore, the aim of this study was to assess the effects of reconstituted high-density lipoprotein (rHDL) administration on the LPS-induced proinflammatory response, intrahepatic eNOS regulation, and portal hypertension in cirrhotic rats. Cirrhotic and control rats were pretreated with rHDL or saline and challenged with LPS or saline. The neutralization of LPS in HDL was assessed by the measurement of HDL-bound fluorescent LPS levels. Plasma tumor necrosis factor alpha (TNFalpha) and lipopolysaccharide binding protein (LBP) levels were measured. The expression of hepatic TNFalpha, LBP, inducible nitric oxide synthase (iNOS), and caveolin-1 (a major eNOS inhibitor) and the activity of protein kinase B (Akt; a major eNOS activator) and eNOS were determined. The portal pressure was measured. The plasma HDL levels were significantly lower in cirrhotic rats than in control rats. In cirrhotic rats, the plasma levels of HDL-bound fluorescent LPS were 50% lower than those in controls, and they were restored after rHDL administration. The plasma TNFalpha levels were significantly higher in LPS-challenged cirrhotic rats than in controls and significantly decreased after rHDL administration. rHDL administration decreased hepatic TNFalpha, LBP, iNOS, and caveolin-1 expression, restored hepatic eNOS and Akt activity, and significantly lowered the portal pressure and intrahepatic vascular resistance. CONCLUSION: In cirrhotic rats, rHDL administration decreases the hepatic proinflammatory signals induced by LPS, restores the hepatic eNOS activity, and lowers the portal pressure. This suggests that the decrease in circulating HDL in cirrhosis plays a role in the excessive proinflammatory response and intrahepatic eNOS down-regulation.


Asunto(s)
Lipoproteínas HDL/administración & dosificación , Cirrosis Hepática/inmunología , Hepatopatías/tratamiento farmacológico , Óxido Nítrico Sintasa/metabolismo , Presión Portal/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Inflamación/tratamiento farmacológico , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/complicaciones , Hepatopatías/inmunología , Masculino , Ratas , Ratas Sprague-Dawley
13.
Mol Cell Biol ; 24(24): 10703-17, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15572675

RESUMEN

The mechanisms involved in the cytotoxic action of oxysterols in the pathogenesis of atherosclerosis still remain poorly understood. Among the major oxysterols present in oxidized low-density lipoprotein, we show here that 7-ketocholesterol (7-Kchol) induces oxidative stress and/or apoptotic events in human aortic smooth muscle cells (SMCs). This specific effect of 7-Kchol is mediated by a robust upregulation (threefold from the basal level) of Nox-4, a reactive oxygen species (ROS)-generating NAD(P)H oxidase homologue. This effect was highlighted by silencing Nox-4 expression with a specific small interfering RNA, which significantly reduced the 7-Kchol-induced production of ROS and abolished apoptotic events. Furthermore, the 7-Kchol activating pathway included an early triggering of endoplasmic reticulum stress, as assessed by transient intracellular Ca(2+) oscillations, and the induction of the expression of the cell death effector CHOP and of GRP78/Bip chaperone via the activation of IRE-1, all hallmarks of the unfolded protein response (UPR). We also showed that 7-Kchol activated the IRE-1/Jun-NH(2)-terminal kinase (JNK)/AP-1 signaling pathway to promote Nox-4 expression. Silencing of IRE-1 and JNK inhibition downregulated Nox-4 expression and subsequently prevented the UPR-dependent cell death induced by 7-Kchol. These findings demonstrate that Nox-4 plays a key role in 7-Kchol-induced SMC death, which is consistent with the hypothesis that Nox-4/oxysterols are involved in the pathogenesis of atherosclerosis.


Asunto(s)
Apoptosis/efectos de los fármacos , Retículo Endoplásmico/fisiología , Regulación Enzimológica de la Expresión Génica , Cetocolesteroles/farmacología , Músculo Liso/efectos de los fármacos , NADPH Oxidasas/metabolismo , Aorta/citología , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Calcio/análisis , Calcio/metabolismo , Células Cultivadas , Chaperón BiP del Retículo Endoplásmico , Endotelio Vascular/citología , Técnica del Anticuerpo Fluorescente Indirecta , Genes Reporteros , Proteínas de Choque Térmico/metabolismo , Humanos , Proteína 1 Reguladora de Hierro/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Cetocolesteroles/metabolismo , Cinética , Luciferasas/metabolismo , Microscopía Fluorescente , Chaperonas Moleculares/metabolismo , Datos de Secuencia Molecular , NADPH Oxidasa 4 , Estrés Oxidativo , Desnaturalización Proteica , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Especies Reactivas de Oxígeno/análisis , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Factor de Transcripción CHOP , Factores de Transcripción/metabolismo
14.
Med Sci (Paris) ; 22(11): 953-9, 2006 Nov.
Artículo en Francés | MEDLINE | ID: mdl-17101097

RESUMEN

Reactive oxygen species (ROS) generated by the NADPH oxidases are conventionally thought to be cytotoxic and mutagenic and at high levels induce an oxidative stress response. The phagocyte NADPH oxidase catalyzes the NADPH-dependent reduction of molecular oxygen to generate superoxide O2-., which can dismute to generate ROS species. Together, these ROS participate in host defence by killing or damaging invading microbes. Flavocytochrome b558 is the catalytic core of the phagocyte NADPH oxidase and consists of a large glycoprotein gp91phox or Nox-2 and a small protein p22phox. The other components of the NADPH oxidase are cytosolic proteins, namely p67phox, p47phox, p40phox and Rac. A defect in any of the genes encoding gp91phox, p22phox, p67phox or p47phox results in chronic granulomatous disease, a genetic disorder characterized by severe and recurrent infections. Evidence is rapidly accumulating that low level of ROS were produced by NADPH oxidase homologs in non-phagocytic cells. To date, six human homologs (Nox-1, Nox-3, Nox-4, Nox-5, Duox-1 and Duox-2) have been recently identified in a variety of non-phagocytic cells. The identification of Nox-1 was quickly followed by the cloning of Nox-3, Nox-4, and Nox-5. In parallel, two very large members of the Nox family were discovered, namely Duox-1 and Duox-2, initially also referred to as thyroid oxidases. The physiological functions of Nox-dependent ROS generation are in progress and still require detailed characterization. Activation mechanisms and tissue distribution of the different members of the Nox family are very different, suggesting distinct physiological functions. Nox family enzymes are likely to be involved in a variety of physiological events including cell proliferation, host defence, differentiation, apoptosis, senescence and activation of growth-related signaling pathways. An increase and a decrease in the function of Nox enzymes can contribute to a wide range of pathological processes.


Asunto(s)
NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno , Animales , Supervivencia Celular , Senescencia Celular , Femenino , Humanos , Glicoproteínas de Membrana/metabolismo , NADPH Oxidasa 2 , Fagocitosis , Filogenia
15.
Mol Ecol Resour ; 16(1): 254-65, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25944057

RESUMEN

The 1.5 Gbp/2C genome of pedunculate oak (Quercus robur) has been sequenced. A strategy was established for dealing with the challenges imposed by the sequencing of such a large, complex and highly heterozygous genome by a whole-genome shotgun (WGS) approach, without the use of costly and time-consuming methods, such as fosmid or BAC clone-based hierarchical sequencing methods. The sequencing strategy combined short and long reads. Over 49 million reads provided by Roche 454 GS-FLX technology were assembled into contigs and combined with shorter Illumina sequence reads from paired-end and mate-pair libraries of different insert sizes, to build scaffolds. Errors were corrected and gaps filled with Illumina paired-end reads and contaminants detected, resulting in a total of 17,910 scaffolds (>2 kb) corresponding to 1.34 Gb. Fifty per cent of the assembly was accounted for by 1468 scaffolds (N50 of 260 kb). Initial comparison with the phylogenetically related Prunus persica gene model indicated that genes for 84.6% of the proteins present in peach (mean protein coverage of 90.5%) were present in our assembly. The second and third steps in this project are genome annotation and the assignment of scaffolds to the oak genetic linkage map. In accordance with the Bermuda and Fort Lauderdale agreements and the more recent Toronto Statement, the oak genome data have been released into public sequence repositories in advance of publication. In this presubmission paper, the oak genome consortium describes its principal lines of work and future directions for analyses of the nature, function and evolution of the oak genome.


Asunto(s)
Genoma de Planta , Quercus/genética , Modelos Genéticos , Anotación de Secuencia Molecular , Filogenia , Quercus/clasificación , Análisis de Secuencia de ADN
16.
PLoS One ; 9(7): e101669, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25014110

RESUMEN

Ulcerative colitis (UC) is a chronic inflammatory bowel disease affecting the rectum which progressively extents. Its etiology remains unknown and the number of treatments available is limited. Studies of UC patients have identified an unbalanced endoplasmic reticulum (ER) stress in the non-inflamed colonic mucosa. Animal models with impaired ER stress are sensitive to intestinal inflammation, suggesting that an unbalanced ER stress could cause inflammation. However, there are no ER stress-regulating strategies proposed in the management of UC partly because of the lack of relevant preclinical model mimicking the disease. Here we generated the IL10/Nox1dKO mouse model which combines immune dysfunction (IL-10 deficiency) and abnormal epithelium (NADPH oxidase 1 (Nox1) deficiency) and spontaneously develops a UC-like phenotype with similar complications (colorectal cancer) than UC. Our data identified an unanticipated combined role of IL10 and Nox1 in the fine-tuning of ER stress responses in goblet cells. As in humans, the ER stress was unbalanced in mice with decreased eIF2α phosphorylation preceding inflammation. In IL10/Nox1dKO mice, salubrinal preserved eIF2α phosphorylation through inhibition of the regulatory subunit of the protein phosphatase 1 PP1R15A/GADD34 and prevented colitis. Thus, this new experimental model highlighted the central role of epithelial ER stress abnormalities in the development of colitis and defined the defective eIF2α pathway as a key pathophysiological target for UC. Therefore, specific regulators able to restore the defective eIF2α pathway could lead to the molecular remission needed to treat UC.


Asunto(s)
Colitis Ulcerosa/etiología , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico , Inflamación/etiología , Interleucina-10/fisiología , NADH NADPH Oxidorreductasas/fisiología , Animales , Western Blotting , Estudios de Casos y Controles , Proliferación Celular , Células Cultivadas , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/patología , Colon/inmunología , Colon/metabolismo , Colon/patología , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/patología , Femenino , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Humanos , Técnicas para Inmunoenzimas , Inflamación/metabolismo , Inflamación/patología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , NADPH Oxidasa 1 , Fosforilación , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Respuesta de Proteína Desplegada
17.
Oncoimmunology ; 1(9): 1612-1613, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23264911

RESUMEN

Genetic studies were performed in a French series of hepatocellular carcinomas. New oncogenes (NFE2L2) and tumor suppressor genes (IRF2, ARID1A and RPS6K3) were found to be recurrently altered. Moreover, a genotoxic signature was identified, raising the possible implication of a genotoxic exposure in the etiology of HCC, which remains to be characterized.

18.
Nat Genet ; 44(6): 694-8, 2012 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-22561517

RESUMEN

Hepatocellular carcinoma (HCC) is the most common primary liver malignancy. Here, we performed high-resolution copy-number analysis on 125 HCC tumors and whole-exome sequencing on 24 of these tumors. We identified 135 homozygous deletions and 994 somatic mutations of genes with predicted functional consequences. We found new recurrent alterations in four genes (ARID1A, RPS6KA3, NFE2L2 and IRF2) not previously described in HCC. Functional analyses showed tumor suppressor properties for IRF2, whose inactivation, exclusively found in hepatitis B virus (HBV)-related tumors, led to impaired TP53 function. In contrast, inactivation of chromatin remodelers was frequent and predominant in alcohol-related tumors. Moreover, association of mutations in specific genes (RPS6KA3-AXIN1 and NFE2L2-CTNNB1) suggested that Wnt/ß-catenin signaling might cooperate in liver carcinogenesis with both oxidative stress metabolism and Ras/mitogen-activated protein kinase (MAPK) pathways. This study provides insight into the somatic mutational landscape in HCC and identifies interactions between mutations in oncogene and tumor suppressor gene mutations related to specific risk factors.


Asunto(s)
Carcinoma Hepatocelular/genética , Variaciones en el Número de Copia de ADN , Neoplasias Hepáticas/genética , Mutación , Humanos , Factor 2 Regulador del Interferón/genética , Transducción de Señal/genética
19.
Plant Methods ; 7: 8, 2011 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-21447150

RESUMEN

BACKGROUND: In the contexts of genomics, post-genomics and systems biology approaches, data integration presents a major concern. Databases provide crucial solutions: they store, organize and allow information to be queried, they enhance the visibility of newly produced data by comparing them with previously published results, and facilitate the exploration and development of both existing hypotheses and new ideas. RESULTS: The FLAGdb++ information system was developed with the aim of using whole plant genomes as physical references in order to gather and merge available genomic data from in silico or experimental approaches. Available through a JAVA application, original interfaces and tools assist the functional study of plant genes by considering them in their specific context: chromosome, gene family, orthology group, co-expression cluster and functional network. FLAGdb++ is mainly dedicated to the exploration of large gene groups in order to decipher functional connections, to highlight shared or specific structural or functional features, and to facilitate translational tasks between plant species (Arabidopsis thaliana, Oryza sativa, Populus trichocarpa and Vitis vinifera). CONCLUSION: Combining original data with the output of experts and graphical displays that differ from classical plant genome browsers, FLAGdb++ presents a powerful complementary tool for exploring plant genomes and exploiting structural and functional resources, without the need for computer programming knowledge. First launched in 2002, a 15th version of FLAGdb++ is now available and comprises four model plant genomes and over eight million genomic features.

20.
Antioxid Redox Signal ; 15(3): 607-19, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21391892

RESUMEN

UNLABELLED: The pathogenesis of pulmonary fibrosis is linked to oxidative stress, possibly generated by the reactive oxygen species (ROS) generating NADPH oxidase NOX4. Epithelial cell death is a crucial early step in the development of the disease, followed only later by the fibrotic stage. We demonstrate that in lungs of patients with idiopathic lung fibrosis, there is strong expression of NOX4 in hyperplastic alveolar type II cells. AIM: To study a possible causative role of NOX4 in the death of alveolar cells, we have generated NOX4-deficient mice. RESULTS: Three weeks after administration of bleomycin, wild-type (WT) mice developed massive fibrosis, whereas NOX4-deficient mice displayed almost normal lung histology, and only little Smad2 phosphorylation and accumulation of myofibroblasts. However, the protective effects of NOX4 deficiency preceded the fibrotic stage. Indeed, at day 7 after bleomycin, lungs of WT mice showed massive increase in epithelial cell apoptosis and inflammation. In NOX4-deficient mice, no increase in apoptosis was observed, whereas inflammation was comparable to WT. In vitro, NOX4-deficient primary alveolar epithelial cells exposed to transforming growth factor-ß(1) did not generate ROS and were protected from apoptosis. Acute treatment with the NOX inhibitors also blunted transforming growth factor-ß(1)-induced apoptosis. CONCLUSION: ROS generation by NOX4 is a key player in epithelial cell death leading to pulmonary fibrosis.


Asunto(s)
Fibrosis Pulmonar Idiopática/metabolismo , NADPH Oxidasas/metabolismo , Mucosa Respiratoria/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Bleomicina/farmacología , Células Cultivadas , Expresión Génica , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/patología , Masculino , Ratones , NADPH Oxidasa 4 , NADPH Oxidasas/antagonistas & inhibidores , NADPH Oxidasas/genética , Estrés Oxidativo/genética , Alveolos Pulmonares/efectos de los fármacos , Alveolos Pulmonares/metabolismo , Alveolos Pulmonares/patología , ARN Interferente Pequeño/genética , Especies Reactivas de Oxígeno/metabolismo , Mucosa Respiratoria/patología , Proteína Smad2/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda