Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Brain ; 146(1): 149-166, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-35298632

RESUMEN

Huntington's disease is a fatal neurodegenerative disease characterized by striatal neurodegeneration, aggregation of mutant Huntingtin and the presence of reactive astrocytes. Astrocytes are important partners for neurons and engage in a specific reactive response in Huntington's disease that involves morphological, molecular and functional changes. How reactive astrocytes contribute to Huntington's disease is still an open question, especially because their reactive state is poorly reproduced in experimental mouse models. Here, we show that the JAK2-STAT3 pathway, a central cascade controlling astrocyte reactive response, is activated in the putamen of Huntington's disease patients. Selective activation of this cascade in astrocytes through viral gene transfer reduces the number and size of mutant Huntingtin aggregates in neurons and improves neuronal defects in two complementary mouse models of Huntington's disease. It also reduces striatal atrophy and increases glutamate levels, two central clinical outcomes measured by non-invasive magnetic resonance imaging. Moreover, astrocyte-specific transcriptomic analysis shows that activation of the JAK2-STAT3 pathway in astrocytes coordinates a transcriptional program that increases their intrinsic proteolytic capacity, through the lysosomal and ubiquitin-proteasome degradation systems. This pathway also enhances their production and exosomal release of the co-chaperone DNAJB1, which contributes to mutant Huntingtin clearance in neurons. Together, our results show that the JAK2-STAT3 pathway controls a beneficial proteostasis response in reactive astrocytes in Huntington's disease, which involves bi-directional signalling with neurons to reduce mutant Huntingtin aggregation, eventually improving disease outcomes.


Asunto(s)
Enfermedad de Huntington , Enfermedades Neurodegenerativas , Animales , Ratones , Enfermedad de Huntington/genética , Astrocitos/metabolismo , Proteostasis , Enfermedades Neurodegenerativas/patología , Neuronas/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo
2.
Neurobiol Dis ; 180: 106086, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36933673

RESUMEN

The role of alpha-synuclein in Parkinson's disease has been heavily investigated since its discovery as a component of Lewy bodies. Recent rodent data demonstrate that alpha-synuclein strain structure is critical for differential propagation and toxicity. Based on these findings, we have compared, for the first time, in this pilot study, the capacity of two alpha-synuclein strains and patient-derived Lewy body extracts to model synucleinopathies after intra-putaminal injection in the non-human primate brain. Functional alterations triggered by these injections were evaluated in vivo using glucose positron emission tomography imaging. Post-mortem immunohistochemical and biochemical analyses were used to detect neuropathological alterations in the dopaminergic system and alpha-synuclein pathology propagation. In vivo results revealed a decrease in glucose metabolism more pronounced in alpha-synuclein strain-injected animals. Histology showed a decreased number of dopaminergic tyrosine hydroxylase-positive cells in the substantia nigra to different extents according to the inoculum used. Biochemistry revealed that alpha-synuclein-induced aggregation, phosphorylation, and propagation in different brain regions are strain-specific. Our findings show that distinct alpha-synuclein strains can induce specific patterns of synucleinopathy in the non-human primate, changes in the nigrostriatal pathway, and functional alterations that resemble early-stage Parkinson's disease.


Asunto(s)
Enfermedad de Parkinson , Sinucleinopatías , Animales , alfa-Sinucleína/metabolismo , Enfermedad de Parkinson/metabolismo , Proyectos Piloto , Cuerpos de Lewy/metabolismo , Sinucleinopatías/patología , Sustancia Negra/metabolismo , Dopamina/metabolismo , Primates/metabolismo
3.
Brain ; 144(4): 1167-1182, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33842937

RESUMEN

Deposits of different abnormal forms of tau in neurons and astrocytes represent key anatomo-pathological features of tauopathies. Although tau protein is highly enriched in neurons and poorly expressed by astrocytes, the origin of astrocytic tau is still elusive. Here, we used innovative gene transfer tools to model tauopathies in adult mouse brains and to investigate the origin of astrocytic tau. We showed in our adeno-associated virus (AAV)-based models and in Thy-Tau22 transgenic mice that astrocytic tau pathology can emerge secondarily to neuronal pathology. By designing an in vivo reporter system, we further demonstrated bidirectional exchanges of tau species between neurons and astrocytes. We then determined the consequences of tau accumulation in astrocytes on their survival in models displaying various status of tau aggregation. Using stereological counting of astrocytes, we report that, as for neurons, soluble tau species are highly toxic to some subpopulations of astrocytes in the hippocampus, whereas the accumulation of tau aggregates does not affect their survival. Thus, astrocytes are not mere bystanders of neuronal pathology. Our results strongly suggest that tau pathology in astrocytes may significantly contribute to clinical symptoms.


Asunto(s)
Astrocitos/patología , Hipocampo/patología , Tauopatías/patología , Proteínas tau/toxicidad , Animales , Humanos , Masculino , Ratones , Neuronas/patología , Agregado de Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/toxicidad , Tauopatías/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
4.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201785

RESUMEN

Alpha-synuclein (α-syn) and leucine-rich repeat kinase 2 (LRRK2) play crucial roles in Parkinson's disease (PD). They may functionally interact to induce the degeneration of dopaminergic (DA) neurons via mechanisms that are not yet fully understood. We previously showed that the C-terminal portion of LRRK2 (ΔLRRK2) with the G2019S mutation (ΔLRRK2G2019S) was sufficient to induce neurodegeneration of DA neurons in vivo, suggesting that mutated LRRK2 induces neurotoxicity through mechanisms that are (i) independent of the N-terminal domains and (ii) "cell-autonomous". Here, we explored whether ΔLRRK2G2019S could modify α-syn toxicity through these two mechanisms. We used a co-transduction approach in rats with AAV vectors encoding ΔLRRK2G2019S or its "dead" kinase form, ΔLRRK2DK, and human α-syn with the A53T mutation (AAV-α-synA53T). Behavioral and histological evaluations were performed at 6- and 15-weeks post-injection. Results showed that neither form of ΔLRRK2 alone induced the degeneration of neurons at these post-injection time points. By contrast, injection of AAV-α-synA53T alone resulted in motor signs and degeneration of DA neurons. Co-injection of AAV-α-synA53T with AAV-ΔLRRK2G2019S induced DA neuron degeneration that was significantly higher than that induced by AAV-α-synA53T alone or with AAV-ΔLRRK2DK. Thus, mutated α-syn neurotoxicity can be enhanced by the C-terminal domain of LRRK2G2019 alone, through cell-autonomous mechanisms.


Asunto(s)
Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/patología , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Proteínas Mutantes/metabolismo , Mutación , alfa-Sinucleína/metabolismo , Animales , Neuronas Dopaminérgicas/metabolismo , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteínas Mutantes/genética , Dominios Proteicos , Ratas , alfa-Sinucleína/genética
5.
Neurobiol Dis ; 134: 104614, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31605779

RESUMEN

The G2019S substitution in the kinase domain of LRRK2 (LRRK2G2019S) is the most prevalent mutation associated with Parkinson's disease (PD). Neurotoxic effects of LRRK2G2019S are thought to result from an increase in its kinase activity as compared to wild type LRRK2. However, it is unclear whether the kinase domain of LRRK2G2019S is sufficient to trigger degeneration or if the full length protein is required. To address this question, we generated constructs corresponding to the C-terminal domain of LRRK2 (ΔLRRK2). A kinase activity that was increased by G2019➔S substitution could be detected in ΔLRRK2. However biochemical experiments suggested it did not bind or phosphorylate the substrate RAB10, in contrast to full length LRRK2. The overexpression of ΔLRRK2G2019S in the rat striatum using lentiviral vectors (LVs) offered a straightforward and simple way to investigate its effects in neurons in vivo. Results from a RT-qPCR array analysis indicated that ΔLRRK2G2019S led to significant mRNA expression changes consistent with a kinase-dependent mechanism. We next asked whether ΔLRRK2 could be sufficient to trigger neurodegeneration in the substantia nigra pars compacta (SNc) in adult rats. Six months after infection of the substantia nigra pars compacta (SNc) with LV-ΔLRRK2WT or LV-ΔLRRK2G2019S, the number of DA neurons was unchanged. To examine whether higher levels of ΔLRRK2G2019S could trigger degeneration we cloned ΔLRRK2 in AAV2/9 construct. As expected, AAV2/9 injected in the SNc led to neuronal expression of ΔLRRK2WT and ΔLRRK2G2019S at much higher levels than those obtained with LVs. Six months after injection, unbiased stereology showed that AAV-ΔLRRK2G2019S produced a significant ~30% loss of neurons positive for tyrosine hydroxylase- and for the vesicular dopamine transporter whereas AAV-ΔLRRK2WT did not. These findings show that overexpression of the C-terminal part of LRRK2 containing the mutant kinase domain is sufficient to trigger degeneration of DA neurons, through cell-autonomous mechanisms, possibly independent of RAB10.


Asunto(s)
Neuronas Dopaminérgicas/patología , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Degeneración Nerviosa/genética , Enfermedad de Parkinson , Dominios Proteicos/genética , Animales , Técnicas de Transferencia de Gen , Vectores Genéticos , Células HEK293 , Humanos , Lentivirus , Masculino , Mutación , Degeneración Nerviosa/patología , Porción Compacta de la Sustancia Negra , Ratas , Ratas Sprague-Dawley
6.
Neurobiol Dis ; 130: 104484, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31132407

RESUMEN

As research progresses in the understanding of the molecular and cellular mechanisms underlying neurodegenerative diseases like Huntington's disease (HD) and expands towards preclinical work for the development of new therapies, highly relevant animal models are increasingly needed to test new hypotheses and to validate new therapeutic approaches. In this light, we characterized an excitotoxic lesion model of striatal dysfunction in non-human primates (NHPs) using cognitive and motor behaviour assessment as well as functional imaging and post-mortem anatomical analyses. NHPs received intra-striatal stereotaxic injections of quinolinic acid bilaterally in the caudate nucleus and unilaterally in the left sensorimotor putamen. Post-operative MRI scans showed atrophy of the caudate nucleus and a large ventricular enlargement in all 6 NHPs that correlated with post-mortem measurements. Behavioral analysis showed deficits in 2 analogues of the Wisconsin card sorting test (perseverative behavior) and in an executive task, while no deficits were observed in a visual recognition or an episodic memory task at 6 months following surgery. Spontaneous locomotor activity was decreased after lesion and the incidence of apomorphine-induced dyskinesias was significantly increased at 3 and 6 months following lesion. Positron emission tomography scans obtained at end-point showed a major deficit in glucose metabolism and D2 receptor density limited to the lesioned striatum of all NHPs compared to controls. Post-mortem analyses revealed a significant loss of medium-sized spiny neurons in the striatum, a loss of neurons and fibers in the globus pallidus, a unilateral decrease in dopaminergic neurons of the substantia nigra and a loss of neurons in the motor and dorsolateral prefrontal cortex. Overall, we show that this robust NHP model presents specific behavioral (learning, execution and retention of cognitive tests) and metabolic functional deficits that, to the best of our knowledge, are currently not mimicked in any available large animal model of striatal dysfunction. Moreover, we used non-invasive, translational techniques like behavior and imaging to quantify such deficits and found that they correlate to a significant cell loss in the striatum and its main input and output structures. This model can thus significantly contribute to the pre-clinical longitudinal evaluation of the ability of new therapeutic cell, gene or pharmacotherapy approaches in restoring the functionality of the striatal circuitry.


Asunto(s)
Disfunción Cognitiva , Modelos Animales de Enfermedad , Enfermedad de Huntington , Trastornos Motores , Animales , Disfunción Cognitiva/inducido químicamente , Cuerpo Estriado/patología , Cuerpo Estriado/fisiopatología , Enfermedad de Huntington/inducido químicamente , Enfermedad de Huntington/patología , Enfermedad de Huntington/fisiopatología , Estudios Longitudinales , Macaca fascicularis , Masculino , Trastornos Motores/inducido químicamente , Ácido Quinolínico/toxicidad
7.
Brain ; 141(2): 535-549, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29253129

RESUMEN

Tauopathies are neurodegenerative diseases characterized by the aggregation of tau protein. These pathologies exhibit a wide variety of clinical and anatomo-pathological presentations, which may result from different pathological mechanisms. Although tau inclusions are a common feature in all these diseases, recent evidence instead implicates small oligomeric aggregates as drivers of tau-induced toxicity. Hence in vivo model systems displaying either soluble or fibrillary forms of wild-type or mutant tau are needed to better identify their respective pathological pathways. Here we used adeno-associated viruses to mediate gene transfer of human tau to the rat brain to develop models of pure tauopathies. Two different constructs were used, each giving rise to a specific phenotype developing in less than 3 months. First, hTAUWT overexpression led to a strong hyperphosphorylation of the protein, which was associated with neurotoxicity in the absence of any significant aggregation. In sharp contrast, its co-expression with the pro-aggregation peptide TauRD-ΔK280 in the hTAUProAggr group strongly promoted its aggregation into Gallyas-positive neurofibrillary tangles, while preserving neuronal survival. Our results support the hypothesis that soluble tau species are key players of tau-induced neurodegeneration.


Asunto(s)
Ovillos Neurofibrilares/metabolismo , Ovillos Neurofibrilares/patología , Tauopatías/metabolismo , Proteínas tau/metabolismo , Animales , Modelos Animales de Enfermedad , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Masculino , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Tinción con Nitrato de Plata , Tauopatías/diagnóstico por imagen , Transducción Genética , Vimentina/metabolismo , Proteínas tau/genética
8.
Brain ; 141(5): 1434-1454, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29534157

RESUMEN

The neurobiological functions of a number of kinases expressed in the brain are unknown. Here, we report new findings on DCLK3 (doublecortin like kinase 3), which is preferentially expressed in neurons in the striatum and dentate gyrus. Its function has never been investigated. DCLK3 expression is markedly reduced in Huntington's disease. Recent data obtained in studies related to cancer suggest DCLK3 could have an anti-apoptotic effect. Thus, we hypothesized that early loss of DCLK3 in Huntington's disease may render striatal neurons more susceptible to mutant huntingtin (mHtt). We discovered that DCLK3 silencing in the striatum of mice exacerbated the toxicity of an N-terminal fragment of mHtt. Conversely, overexpression of DCLK3 reduced neurodegeneration produced by mHtt. DCLK3 also produced beneficial effects on motor symptoms in a knock-in mouse model of Huntington's disease. Using different mutants of DCLK3, we found that the kinase activity of the protein plays a key role in neuroprotection. To investigate the potential mechanisms underlying DCLK3 effects, we studied the transcriptional changes produced by the kinase domain in human striatal neurons in culture. Results show that DCLK3 regulates in a kinase-dependent manner the expression of many genes involved in transcription regulation and nucleosome/chromatin remodelling. Consistent with this, histological evaluation showed DCLK3 is present in the nucleus of striatal neurons and, protein-protein interaction experiments suggested that the kinase domain interacts with zinc finger proteins, including the transcriptional activator adaptor TADA3, a core component of the Spt-ada-Gcn5 acetyltransferase (SAGA) complex which links histone acetylation to the transcription machinery. Our novel findings suggest that the presence of DCLK3 in striatal neurons may play a key role in transcription regulation and chromatin remodelling in these brain cells, and show that reduced expression of the kinase in Huntington's disease could render the striatum highly vulnerable to neurodegeneration.


Asunto(s)
Cuerpo Estriado/enzimología , Proteína Huntingtina/genética , Enfermedad de Huntington/terapia , Mutación/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Quinasas Similares a Doblecortina , Regulación hacia Abajo/genética , Complejo IV de Transporte de Electrones/metabolismo , Fuerza de la Mano/fisiología , Enfermedad de Huntington/genética , Macaca fascicularis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora , Neuronas/metabolismo , Fosfopiruvato Hidratasa/metabolismo , Proteínas Serina-Treonina Quinasas/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Neuroimage ; 146: 1025-1037, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27989846

RESUMEN

The external pallidum (GPe) is a component of the indirect pathway centrally placed in the basal ganglia. Studies already demonstrated that the pharmacological disinhibition of the sensorimotor, associative, and limbic GPe produced dyskinesia, hyperactivity, and compulsive behaviors, respectively. The aim of this study was to investigate the cortical regions altered by the disinhibition of each GPe functional territory. Thus, 5 macaques were injected with bicuculline in sensorimotor, associative, and limbic sites of the GPe producing dyskinesia, hyperactivity, and compulsive behaviors, and underwent in vivo positron tomography with 18F-2-fluoro-2-deoxy-D-glucose to identify cortical dysfunctions related to GPe disinhibition. Blood cortisol levels were also quantified as a biomarker of anxiety for each condition. Our results showed that pallidal bicuculline injections in anesthetized animals reproducibly modified the activity of specific ipsilateral and contralateral cortical areas depending on the pallidal territory targeted. Bicuculline injections in the limbic GPe led to increased ipsilateral activations in limbic cortical regions (anterior insula, amygdala, and hippocampus). Injections in the associative vs. sensorimotor GPe increased the activity in the ipsilateral midcingulate vs. somatosensory and parietal cortices. Moreover, bicuculline injections increased blood cortisol levels only in animals injected in their limbic GPe. These are the first functional results supporting the model of opened cortico-striato-thalamo-cortical loops where modifications in a functional pallidal territory can impact cortical activities of the same functional territory but also cortical activities of other functional territories. This highlights the importance of the GPe as a crucial node in the top-down control of the cortico-striato-thalamo-cortical circuits from the frontal cortex to influence the perception, attention, and emotional processes at downstream (or non-frontal) cortical levels. Finally, we showed the implication of the ventral pallidum with the amygdala and the insular cortex in a circuit related to aversive processing that should be crucial for the production of anxious disorders.


Asunto(s)
Conducta Animal , Encéfalo/metabolismo , Globo Pálido/metabolismo , Animales , Bicuculina/administración & dosificación , Encéfalo/efectos de los fármacos , Conducta Compulsiva/metabolismo , Discinesias/metabolismo , Fluorodesoxiglucosa F18 , Antagonistas de Receptores de GABA-A/administración & dosificación , Globo Pálido/efectos de los fármacos , Hipercinesia/metabolismo , Macaca fascicularis , Macaca mulatta , Tomografía de Emisión de Positrones
10.
Hum Mol Genet ; 24(6): 1563-73, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25398949

RESUMEN

The mechanisms underlying preferential atrophy of the striatum in Huntington's disease (HD) are unknown. One hypothesis is that a set of gene products preferentially expressed in the striatum could determine the particular vulnerability of this brain region to mutant huntingtin (mHtt). Here, we studied the striatal protein µ-crystallin (Crym). Crym is the NADPH-dependent p38 cytosolic T3-binding protein (p38CTBP), a key regulator of thyroid hormone (TH) T3 (3,5,3'-triiodo-l-thyronine) transportation. It has been also recently identified as the enzyme that reduces the sulfur-containing cyclic ketimines, which are potential neurotransmitters. Here, we confirm the preferential expression of the Crym protein in the rodent and macaque striatum. Crym expression was found to be higher in the macaque caudate than in the putamen. Expression of Crym was reduced in the BACHD and Knock-in 140CAG mouse models of HD before onset of striatal atrophy. We show that overexpression of Crym in striatal medium-size spiny neurons using a lentiviral-based strategy in mice is neuroprotective against the neurotoxicity of an N-terminal fragment of mHtt in vivo. Thus, reduction of Crym expression in HD could render striatal neurons more susceptible to mHtt suggesting that Crym may be a key determinant of the vulnerability of the striatum. In addition our work points to Crym as a potential molecular link between striatal degeneration and the THs deregulation reported in HD patients.


Asunto(s)
Cuerpo Estriado/patología , Cristalinas/genética , Enfermedad de Huntington/patología , Proteínas del Tejido Nervioso/genética , Animales , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo , Expresión Génica , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Macaca , Masculino , Ratones , Ratones Transgénicos , Mutación , Ratas , Cristalinas mu
11.
J Neurosci ; 35(6): 2817-29, 2015 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-25673868

RESUMEN

Astrocyte reactivity is a hallmark of neurodegenerative diseases (ND), but its effects on disease outcomes remain highly debated. Elucidation of the signaling cascades inducing reactivity in astrocytes during ND would help characterize the function of these cells and identify novel molecular targets to modulate disease progression. The Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) pathway is associated with reactive astrocytes in models of acute injury, but it is unknown whether this pathway is directly responsible for astrocyte reactivity in progressive pathological conditions such as ND. In this study, we examined whether the JAK/STAT3 pathway promotes astrocyte reactivity in several animal models of ND. The JAK/STAT3 pathway was activated in reactive astrocytes in two transgenic mouse models of Alzheimer's disease and in a mouse and a nonhuman primate lentiviral vector-based model of Huntington's disease (HD). To determine whether this cascade was instrumental for astrocyte reactivity, we used a lentiviral vector that specifically targets astrocytes in vivo to overexpress the endogenous inhibitor of the JAK/STAT3 pathway [suppressor of cytokine signaling 3 (SOCS3)]. SOCS3 significantly inhibited this pathway in astrocytes, prevented astrocyte reactivity, and decreased microglial activation in models of both diseases. Inhibition of the JAK/STAT3 pathway within reactive astrocytes also increased the number of huntingtin aggregates, a neuropathological hallmark of HD, but did not influence neuronal death. Our data demonstrate that the JAK/STAT3 pathway is a common mediator of astrocyte reactivity that is highly conserved between disease states, species, and brain regions. This universal signaling cascade represents a potent target to study the role of reactive astrocytes in ND.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Astrocitos , Enfermedad de Huntington/fisiopatología , Quinasas Janus , Factor de Transcripción STAT3 , Transducción de Señal , Enfermedad de Alzheimer/patología , Animales , Complejo IV de Transporte de Electrones/metabolismo , Humanos , Enfermedad de Huntington/patología , Macaca fascicularis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , FN-kappa B/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Proteína 3 Supresora de la Señalización de Citocinas , Proteínas Supresoras de la Señalización de Citocinas/genética
12.
J Lipid Res ; 56(8): 1511-8, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26063461

RESUMEN

Decreased brain content of DHA, the most abundant long-chain n-3 polyunsaturated fatty acid (n-3 LCPUFA) in the brain, is accompanied by severe neurosensorial impairments linked to impaired neurotransmission and impaired brain glucose utilization. In the present study, we hypothesized that increasing n-3 LCPUFA intake at an early age may help to prevent or correct the glucose hypometabolism observed during aging and age-related cognitive decline. The effects of 12 months' supplementation with n-3 LCPUFA on brain glucose utilization assessed by positron emission tomography was tested in young adult mouse lemurs (Microcebus murinus). Cognitive function was tested in parallel in the same animals. Lemurs supplemented with n-3 LCPUFA had higher brain glucose uptake and cerebral metabolic rate of glucose compared with controls in all brain regions. The n-3 LCPUFA-supplemented animals also had higher exploratory activity in an open-field task and lower evidence of anxiety in the Barnes maze. Our results demonstrate for the first time in a nonhuman primate that n-3 LCPUFA supplementation increases brain glucose uptake and metabolism and concomitantly reduces anxiety.


Asunto(s)
Ansiedad/tratamiento farmacológico , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Cheirogaleidae , Ácidos Grasos Omega-3/farmacología , Aceites de Pescado/química , Glucosa/metabolismo , Animales , Ansiedad/metabolismo , Ansiedad/fisiopatología , Metabolismo Basal/efectos de los fármacos , Transporte Biológico/efectos de los fármacos , Encéfalo/fisiopatología , Suplementos Dietéticos , Conducta Exploratoria/efectos de los fármacos , Ácidos Grasos Omega-3/sangre , Ácidos Grasos Omega-3/uso terapéutico , Masculino , Memoria Espacial/efectos de los fármacos
13.
Hum Mol Genet ; 22(19): 3869-82, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23720495

RESUMEN

Huntington's disease (HD) is a neurodegenerative disorder caused by an abnormal expansion of a CAG repeat encoding a polyglutamine tract in the huntingtin (Htt) protein. The mutation leads to neuronal death through mechanisms which are still unknown. One hypothesis is that mitochondrial defects may play a key role. In support of this, the activity of mitochondrial complex II (C-II) is preferentially reduced in the striatum of HD patients. Here, we studied C-II expression in different genetic models of HD expressing N-terminal fragments of mutant Htt (mHtt). Western blot analysis showed that the expression of the 30 kDa Iron-Sulfur (Ip) subunit of C-II was significantly reduced in the striatum of the R6/1 transgenic mice, while the levels of the FAD containing catalytic 70 kDa subunit (Fp) were not significantly changed. Blue native gel analysis showed that the assembly of C-II in mitochondria was altered early in N171-82Q transgenic mice. Early loco-regional reduction in C-II activity and Ip protein expression was also demonstrated in a rat model of HD using intrastriatal injection of lentiviral vectors encoding mHtt. Infection of the rat striatum with a lentiviral vector coding the C-II Ip or Fp subunits induced a significant overexpression of these proteins that led to significant neuroprotection of striatal neurons against mHtt neurotoxicity. These results obtained in vivo support the hypothesis that structural and functional alterations of C-II induced by mHtt may play a critical role in the degeneration of striatal neurons in HD and that mitochondrial-targeted therapies may be useful in its treatment.


Asunto(s)
Cuerpo Estriado/metabolismo , Complejo II de Transporte de Electrones/metabolismo , Enfermedad de Huntington/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Células Cultivadas , Cuerpo Estriado/fisiopatología , Modelos Animales de Enfermedad , Complejo II de Transporte de Electrones/genética , Femenino , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Enfermedad de Huntington/fisiopatología , Masculino , Ratones , Ratones Transgénicos , Mitocondrias/genética , Proteínas Mutantes/metabolismo , Mutación , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley
14.
Neuroimage ; 90: 374-80, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24382523

RESUMEN

Due to their pure intracellular compartmentation, the translational diffusion of brain metabolites in vivo depends on the intracellular environment, including viscosity, molecular crowding and subcellular structures. However, as the diffusion time is increased, metabolites have enough time to significantly encounter cell boundaries, so that cell size and geometry are expected to strongly determine metabolite diffusion path. In the present work, diffusion-weighted nuclear magnetic resonance spectroscopy was used to investigate brain metabolite diffusion in vivo, at long and ultra-long diffusion times (from ~80 ms to more than 1 s), in a voxel with equal proportions of white and grey matter in macaque monkeys. No dramatic dependence of the ADC on the diffusion time was observed, suggesting that metabolites' apparent diffusion is largely unrestricted over these time-scales. In an attempt to explain this stability and relate it to plausible cell geometries, data were analyzed with two simple geometrical models describing diffusion either in fibers such as axons, dendrites and astrocytic processes, or in closed cell bodies. Results support the idea that DW-MRS is sensitive to cell shape, and that a vast fraction of brain metabolites is diffusing in long fibers rather than being confined in cell bodies.


Asunto(s)
Encéfalo/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Fibras Nerviosas/metabolismo , Animales , Procesamiento de Imagen Asistido por Computador , Espacio Intracelular/metabolismo , Macaca fascicularis , Imagen por Resonancia Magnética
15.
Stem Cells ; 31(9): 1816-28, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23712629

RESUMEN

Decreased expression of neuronal genes such as brain-derived neurotrophic factor (BDNF) is associated with several neurological disorders. One molecular mechanism associated with Huntington disease (HD) is a discrete increase in the nuclear activity of the transcriptional repressor REST/NRSF binding to repressor element-1 (RE1) sequences. High-throughput screening of a library of 6,984 compounds with luciferase-assay measuring REST activity in neural derivatives of human embryonic stem cells led to identify two benzoimidazole-5-carboxamide derivatives that inhibited REST silencing in a RE1-dependent manner. The most potent compound, X5050, targeted REST degradation, but neither REST expression, RNA splicing nor binding to RE1 sequence. Differential transcriptomic analysis revealed the upregulation of neuronal genes targeted by REST in wild-type neural cells treated with X5050. This activity was confirmed in neural cells produced from human induced pluripotent stem cells derived from a HD patient. Acute intraventricular delivery of X5050 increased the expressions of BDNF and several other REST-regulated genes in the prefrontal cortex of mice with quinolinate-induced striatal lesions. This study demonstrates that the use of pluripotent stem cell derivatives can represent a crucial step toward the identification of pharmacological compounds with therapeutic potential in neurological affections involving decreased expression of neuronal genes associated to increased REST activity, such as Huntington disease.


Asunto(s)
Células Madre Embrionarias/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento/métodos , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Proteínas Represoras/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Línea Celular , Modelos Animales de Enfermedad , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Genes Reporteros , Humanos , Enfermedad de Huntington/patología , Luciferasas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Células-Madre Neurales/citología , Células-Madre Neurales/efectos de los fármacos , Neuronas/efectos de los fármacos , Proteínas Represoras/metabolismo , Transcriptoma/efectos de los fármacos , Transcriptoma/genética
16.
J Neurosci ; 32(32): 10809-18, 2012 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-22875916

RESUMEN

Astrocytes and microglia become reactive under most brain pathological conditions, making this neuroinflammation process a surrogate marker of neuronal dysfunction. Neuroinflammation is associated with increased levels of translocator protein 18 kDa (TSPO) and binding sites for TSPO ligands. Positron emission tomography (PET) imaging of TSPO is thus commonly used to monitor neuroinflammation in preclinical and clinical studies. It is widely considered that TSPO PET signal reveals reactive microglia, although a few studies suggested a potential contribution of reactive astrocytes. Because astrocytes and microglia play very different roles, it is crucial to determine whether reactive astrocytes can also overexpress TSPO and yield to a detectable TSPO PET signal in vivo. We used a model of selective astrocyte activation through lentiviral gene transfer of the cytokine ciliary neurotrophic factor (CNTF) into the rat striatum, in the absence of neurodegeneration. CNTF induced an extensive activation of astrocytes, which overexpressed GFAP and become hypertrophic, whereas microglia displayed minimal increase in reactive markers. Two TSPO radioligands, [(18)F]DPA-714 [N,N-diethyl-2-(2-(4-(2-[(18)F]fluoroethoxy)phenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide] and [(11)C]SSR180575 (7-chloro-N,N-dimethyl-5-[(11)C]methyl-4-oxo-3-phenyl-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide), showed a significant binding in the lenti-CNTF-injected striatum that was saturated and displaced by PK11195 [N-methyl-N-(1-methylpropyl)-1-(2-chlorophenyl)-isoquinoline-3-carboxamide]. The volume of radioligand binding matched the GFAP immunopositive volume. TSPO mRNA levels were significantly increased, and TSPO protein was overexpressed by CNTF-activated astrocytes. We show that reactive astrocytes overexpress TSPO, yielding to a significant and selective binding of TSPO radioligands. Therefore, caution must be used when interpreting TSPO PET imaging in animals or patients because reactive astrocytes can contribute to the signal in addition to reactive microglia.


Asunto(s)
Astrocitos/diagnóstico por imagen , Astrocitos/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Tomografía de Emisión de Positrones , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Acetamidas/farmacocinética , Análisis de Varianza , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Antígeno CD11b/metabolismo , Proteínas de Unión al Calcio/metabolismo , Factor Neurotrófico Ciliar/genética , Factor Neurotrófico Ciliar/metabolismo , Cuerpo Estriado/citología , Cuerpo Estriado/diagnóstico por imagen , Cuerpo Estriado/efectos de los fármacos , Fluorodesoxiglucosa F18/metabolismo , Vectores Genéticos/genética , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Indoles/farmacocinética , Imagen por Resonancia Magnética , Masculino , Proteínas de Microfilamentos/metabolismo , Unión Proteica/efectos de los fármacos , ARN Mensajero/metabolismo , Ensayo de Unión Radioligante , Radiofármacos/farmacocinética , Ratas , Ratas Sprague-Dawley
17.
Hum Mol Genet ; 19(15): 3053-67, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20494921

RESUMEN

Huntington's disease (HD) is a neurodegenerative disorder previously thought to be of primary neuronal origin, despite ubiquitous expression of mutant huntingtin (mHtt). We tested the hypothesis that mHtt expressed in astrocytes may contribute to the pathogenesis of HD. To better understand the contribution of astrocytes in HD in vivo, we developed a novel mouse model using lentiviral vectors that results in selective expression of mHtt into striatal astrocytes. Astrocytes expressing mHtt developed a progressive phenotype of reactive astrocytes that was characterized by a marked decreased expression of both glutamate transporters, GLAST and GLT-1, and of glutamate uptake. These effects were associated with neuronal dysfunction, as observed by a reduction in DARPP-32 and NR2B expression. Parallel studies in brain samples from HD subjects revealed early glial fibrillary acidic protein expression in striatal astrocytes from Grade 0 HD cases. Astrogliosis was associated with morphological changes that increased with severity of disease, from Grades 0 through 4 and was more prominent in the putamen. Combined immunofluorescence showed co-localization of mHtt in astrocytes in all striatal HD specimens, inclusive of Grade 0 HD. Consistent with the findings from experimental mice, there was a significant grade-dependent decrease in striatal GLT-1 expression from HD subjects. These findings suggest that the presence of mHtt in astrocytes alters glial glutamate transport capacity early in the disease process and may contribute to HD pathogenesis.


Asunto(s)
Astrocitos/metabolismo , Ácido Glutámico/metabolismo , Enfermedad de Huntington/metabolismo , Neostriado/patología , Péptidos/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Expansión de Repetición de Trinucleótido/genética , Anciano , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Animales , Astrocitos/patología , Transporte Biológico , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Regulación hacia Abajo , Técnica del Anticuerpo Fluorescente , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Enfermedad de Huntington/patología , Lentivirus/genética , Ratones , Persona de Mediana Edad , Proteínas Mutantes/metabolismo , Neostriado/metabolismo , Neuronas/metabolismo , Neuronas/patología , Fenotipo , Receptores de N-Metil-D-Aspartato/metabolismo , Factores de Tiempo
18.
Proc Natl Acad Sci U S A ; 106(10): 3988-93, 2009 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-19234118

RESUMEN

Neuroimaging methods have considerably developed over the last decades and offer various noninvasive approaches for measuring cerebral metabolic fluxes connected to energy metabolism, including PET and magnetic resonance spectroscopy (MRS). Among these methods, (31)P MRS has the particularity and advantage to directly measure cerebral ATP synthesis without injection of labeled precursor. However, this approach is methodologically challenging, and further validation studies are required to establish (31)P MRS as a robust method to measure brain energy synthesis. In the present study, we performed a multimodal imaging study based on the combination of 3 neuroimaging techniques, which allowed us to obtain an integrated picture of brain energy metabolism and, at the same time, to validate the saturation transfer (31)P MRS method as a quantitative measurement of brain ATP synthesis. A total of 29 imaging sessions were conducted to measure glucose consumption (CMRglc), TCA cycle flux (V(TCA)), and the rate of ATP synthesis (V(ATP)) in primate monkeys by using (18)F-FDG PET scan, indirect (13)C MRS, and saturation transfer (31)P MRS, respectively. These 3 complementary measurements were performed within the exact same area of the brain under identical physiological conditions, leading to: CMRglc = 0.27 +/- 0.07 micromol x g(-1) x min(-1), V(TCA) = 0.63 +/- 0.12 micromol x g(-1) x min(-1), and V(ATP) = 7.8 +/- 2.3 micromol x g(-1) x min(-1). The consistency of these 3 fluxes with literature and, more interestingly, one with each other, demonstrates the robustness of saturation transfer (31)P MRS for directly evaluating ATP synthesis in the living brain.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Encéfalo/fisiología , Metabolismo Energético/fisiología , Imagenología Tridimensional/métodos , Animales , Ciclo del Ácido Cítrico , Fluorodesoxiglucosa F18 , Glucosa/metabolismo , Haplorrinos , Espectroscopía de Resonancia Magnética , Masculino , Tomografía de Emisión de Positrones , Reproducibilidad de los Resultados
19.
Acta Neuropathol Commun ; 9(1): 165, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34641980

RESUMEN

Amyloid-ß (Aß) pathology transmission has been described in patients following iatrogenic exposure to compounds contaminated with Aß proteins. It can induce cerebral Aß angiopathy resulting in brain hemorrhages and devastating clinical impacts. Iatrogenic transmission of tau pathology is also suspected but not experimentally proven. In both scenarios, lesions were detected several decades after the putatively triggering medico-surgical act. There is however little information regarding the cognitive repercussions in individuals who do not develop cerebral hemorrhages. In the current study, we inoculated the posterior cingulate cortex and underlying corpus callosum of young adult primates (Microcebus murinus) with either Alzheimer's disease or control brain extracts. This led to widespread Aß and tau pathologies in all of the Alzheimer-inoculated animals following a 21-month-long incubation period (n = 12) whereas none of the control brain extract-inoculated animals developed such lesions (n = 6). Aß deposition affected almost all cortical regions. Tau pathology was also detected in Aß-deposit-free regions distant from the inoculation sites (e.g. in the entorhinal cortex), while some regions adjacent, but not connected, to the inoculation sites were spared (e.g. the occipital cortex). Alzheimer-inoculated animals developed cognitive deficits and cerebral atrophy compared to controls. These pathologies were induced using two different batches of Alzheimer brain extracts. This is the first experimental demonstration that tau can be transmitted by human brain extracts inoculations in a primate. We also showed for the first time that the transmission of widespread Aß and tau pathologies can be associated with cognitive decline. Our results thus reinforce the need to organize a systematic monitoring of individuals who underwent procedures associated with a risk of Aß and tau iatrogenic transmission. They also provide support for Alzheimer brain-inoculated primates as relevant models of Alzheimer pathology.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Encéfalo/metabolismo , Encéfalo/patología , Disfunción Cognitiva , Proteínas tau/toxicidad , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Cheirogaleidae , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Humanos , Enfermedad Iatrogénica
20.
EJNMMI Res ; 11(1): 36, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33826008

RESUMEN

BACKGROUND: Positron Emission Tomography (PET) imaging of the Synaptic Vesicle glycoprotein (SV) 2A is a new tool to quantify synaptic density. [18F]UCB-H was one of the first promising SV2A-ligands to be labelled and used in vivo in rodent and human, while limited information on its pharmacokinetic properties is available in the non-human primate. Here, we evaluate the reliability of the three most commonly used modelling approaches for [18F]UCB-H in the non-human cynomolgus primate, adding the coupled fit of the non-displaceable distribution volume (VND) as an alternative approach to improve unstable fit. The results are discussed in the light of the current state of SV2A PET ligands. RESULTS: [18F]UCB-H pharmacokinetic data was optimally fitted with a two-compartment model (2TCM), although the model did not always converge (large total volume of distribution (VT) or large uncertainty of the estimate). 2TCM with coupled fit K1/k2 across brain regions stabilized the quantification, and confirmed a lower specific signal of [18F]UCB-H compared to the newest SV2A-ligands. However, the measures of VND and the influx parameter (K1) are similar to what has been reported for other SV2A ligands. These data were reinforced by displacement studies using [19F]UCB-H, demonstrating only 50% displacement of the total [18F]UCB-H signal at maximal occupancy of SV2A. As previously demonstrated in clinical studies, the graphical method of Logan provided a more robust estimate of VT with only a small bias compared to 2TCM. CONCLUSIONS: Modeling issues with a 2TCM due to a slow component have previously been reported for other SV2A ligands with low specific binding, or after blocking of specific binding. As all SV2A ligands share chemical structural similarities, we hypothesize that this slow binding component is common for all SV2A ligands, but only hampers quantification when specific binding is low.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda