Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 318
Filtrar
1.
Handb Exp Pharmacol ; 284: 289-312, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37922034

RESUMEN

Sphingolipids are crucial molecules in the respiratory airways. As in most other tissues and organs, in the lung sphingolipids play an essential role as structural constituents as they regulate barrier function and fluidity of cell membranes. A lung-specific feature is the occurrence of sphingolipids as minor structural components in the surfactant. However, sphingolipids are also key signaling molecules involved in airway cell signaling and their dynamical formation and metabolism are important for normal lung physiology. Dysregulation of sphingolipid metabolism and signaling is involved in altering lung tissue and initiates inflammatory processes promoting the pathogenesis of pulmonal diseases including cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), and asthma.In the present review, the important role of specific sphingolipid species in pulmonal diseases will be discussed. Only such an understanding opens up the possibility of developing new therapeutic strategies with the aim of correcting the imbalance in sphingolipid metabolism and signaling. Such delivery strategies have already been studied in animal models of these lung diseases, demonstrating that targeting the sphingolipid profile represents new therapeutic opportunities for lung disorders.


Asunto(s)
Fibrosis Quística , Enfermedad Pulmonar Obstructiva Crónica , Animales , Esfingolípidos , Pulmón , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Fibrosis Quística/tratamiento farmacológico , Transducción de Señal , Ceramidas , Esfingosina
2.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38473734

RESUMEN

Rhinoviral infections cause approximately 50% of upper respiratory tract infections and novel treatment options are urgently required. We tested the effects of 10 µM to 20 µM sphingosine on the infection of cultured and freshly isolated human cells with minor and major group rhinovirus in vitro. We also performed in vivo studies on mice that were treated with an intranasal application of 10 µL of either a 10 µM or a 100 µM sphingosine prior and after infection with rhinovirus strains 1 and 2 and determined the infection of nasal epithelial cells in the presence or absence of sphingosine. Finally, we determined and characterized a direct binding of sphingosine to rhinovirus. Our data show that treating freshly isolated human nasal epithelial cells with sphingosine prevents infections with rhinovirus strains 2 (minor group) and 14 (major group). Nasal infection of mice with rhinovirus 1b and 2 is prevented by the intranasal application of sphingosine before or as long as 8 h after infection with rhinovirus. Nasal application of the same doses of sphingosine exerts no adverse effects on epithelial cells as determined by hemalaun and TUNEL stainings. The solvent, octylglucopyranoside, was without any effect in vitro and in vivo. Mechanistically, we demonstrate that the positively charged lipid sphingosine binds to negatively charged molecules in the virus, which seems to prevent the infection of epithelial cells. These findings indicate that exogenous sphingosine prevents infections with rhinoviruses, a finding that could be therapeutically exploited. In addition, we demonstrated that sphingosine has no obvious adverse effects on the nasal mucosa. Sphingosine prevents rhinoviral infections by a biophysical mode of action, suggesting that sphingosine could serve to prevent many viral infections of airways and epithelial cells in general. Future studies need to determine the molecular mechanisms of how sphingosine prevents rhinoviral infections and whether sphingosine also prevents infections with other viruses inducing respiratory tract infections. Furthermore, our studies do not provide detailed pharmacokinetics that are definitely required before the further development of sphingosine.


Asunto(s)
Infecciones por Enterovirus , Infecciones del Sistema Respiratorio , Humanos , Animales , Ratones , Esfingosina , Mucosa Nasal , Células Epiteliales , Rhinovirus
3.
J Biol Chem ; 298(8): 102185, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35753355

RESUMEN

Major depressive disorder (MDD) is a severe disease of unknown pathogenesis that will affect ∼10% of people during their lifetime. Therapy for MDD requires prolonged treatment and often fails, predicating a need for novel treatment strategies. Here, we report increased ceramide levels in the blood plasma of MDD patients and in murine stress-induced models of MDD. These blood plasma ceramide levels correlated with the severity of MDD in human patients and were independent of age, sex, or body mass index. In addition, intravenous injection of anti-ceramide antibodies or neutral ceramidase rapidly abrogated stress-induced MDD, and intravenous injection of blood plasma from mice with MDD induced depression-like behavior in untreated mice, which was abrogated by ex vivo preincubation of the plasma with anti-ceramide antibodies or ceramidase. Mechanistically, we demonstrate that ceramide accumulated in endothelial cells of the hippocampus of stressed mice, evidenced by the quantitative measurement of ceramide in purified hippocampus endothelial cells. We found ceramide inhibited the activity of phospholipase D (PLD) in endothelial cells in vitro and in the hippocampus in vivo and thereby decreased phosphatidic acid in the hippocampus. Finally, we show intravenous injection of PLD or phosphatidic acid abrogated MDD, indicating the significance of this pathway in MDD pathogenesis. Our data indicate that ceramide controls PLD activity and phosphatidic acid formation in hippocampal endothelial cells and thereby mediates MDD. We propose that neutralization of plasma ceramide could represent a rapid-acting targeted treatment for MDD.


Asunto(s)
Trastorno Depresivo Mayor , Fosfolipasa D , Animales , Ceramidas/metabolismo , Trastorno Depresivo Mayor/metabolismo , Células Endoteliales/metabolismo , Hipocampo/metabolismo , Humanos , Ratones , Ácidos Fosfatidicos/metabolismo , Fosfolipasa D/metabolismo , Plasma
4.
Mol Psychiatry ; 27(1): 307-314, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34608263

RESUMEN

Acid sphingomyelinase (ASM) cleaves sphingomyelin into the highly lipophilic ceramide, which forms large gel-like rafts/platforms in the plasma membrane. We showed that SARS-CoV-2 uses these platforms for cell entry. Lowering the amount of ceramide or ceramide blockade due to inhibitors of ASM, genetic downregulation of ASM, anti-ceramide antibodies or degradation by neutral ceramidase protected against infection with SARS-CoV-2. The addition of ceramide restored infection with SARS-CoV-2. Many clinically approved medications functionally inhibit ASM and are called FIASMAs (functional inhibitors of acid sphingomyelinase). The FIASMA fluvoxamine showed beneficial effects on COVID-19 in a randomized prospective study and a prospective open-label real-world study. Retrospective and observational studies showed favorable effects of FIASMA antidepressants including fluoxetine, and the FIASMA hydroxyzine on the course of COVID-19. The ASM/ceramide system provides a framework for a better understanding of the infection of cells by SARS-CoV-2 and the clinical, antiviral, and anti-inflammatory effects of functional inhibitors of ASM. This framework also supports the development of new drugs or the repurposing of "old" drugs against COVID-19.


Asunto(s)
COVID-19 , Esfingomielina Fosfodiesterasa , Ceramidas/metabolismo , Humanos , Estudios Prospectivos , Ensayos Clínicos Controlados Aleatorios como Asunto , Estudios Retrospectivos , SARS-CoV-2 , Esfingomielina Fosfodiesterasa/genética
5.
Int J Mol Sci ; 24(19)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37834072

RESUMEN

Major depressive disorder (MDD) has a lifetime prevalence of approximately 10% and is one of the most common diseases worldwide. Although many pathogenetic mechanisms of MDD have been proposed, molecular details and a unifying hypothesis of the pathogenesis of MDD remain to be defined. Here, we investigated whether tyrosine nitrosylation, which is caused by reaction of the C-atom 3 of the tyrosine phenol ring with peroxynitrate (ONOO-), plays a role in experimental MDD, because tyrosine nitrosylation may affect many cell functions altered in MDD. To this end, we induced stress through glucocorticoid application or chronic environmental unpredictable stress and determined tyrosine nitrosylation in the hippocampus through immuno-staining and ELISA. The role of catalases and peroxidases for tyrosine nitrosylation was measured using enzyme assays. We show that glucocorticoid- and chronic unpredictable environmental stress induced tyrosine nitrosylation in the hippocampus. Long-term treatment of stressed mice with the classical antidepressants amitriptyline or fluoxetine prevented tyrosine nitrosylation. Tyrosine nitrosylation was also prevented through i.v. application of anti-ceramide antibodies or recombinant ceramidase to neutralize or degrade, respectively, blood plasma ceramide that has been recently shown to induce experimental MDD. Finally, the application of phosphatidic acid, previously shown to be reduced in the hippocampus upon stress, also reverted stress-induced tyrosine nitrosylation. The inhibition of tyrosine nitrosylation by interfering with the formation of NO radicals at least partly restored normal behavior in stressed mice. These data suggest that tyrosine nitrosylation might contribute to the pathogenesis of MDD and targeting this process might contribute to the treatment of MDD.


Asunto(s)
Trastorno Depresivo Mayor , Animales , Ratones , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/etiología , Trastorno Depresivo Mayor/metabolismo , Glucocorticoides/metabolismo , Tirosina/metabolismo , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Fluoxetina/farmacología , Fluoxetina/uso terapéutico , Hipocampo/metabolismo
6.
Int J Mol Sci ; 24(18)2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37762308

RESUMEN

Cystic fibrosis (CF) is an autosomal recessive disorder caused by the deficiency of the cystic fibrosis transmembrane conductance regulator (CFTR) and often leads to pulmonary infections caused by various pathogens, including Staphylococcus aureus, Pseudomonas aeruginosa, and nontuberculous mycobacteria, particularly Mycobacterium abscessus. Unfortunately, M. abscessus infections are increasing in prevalence and are associated with the rapid deterioration of CF patients. The treatment options for M. abscessus infections are limited, requiring the urgent need to comprehend infectious pathogenesis and develop new therapeutic interventions targeting affected CF patients. Here, we show that the deficiency of CFTR reduces sphingosine levels in bronchial and alveolar epithelial cells and macrophages from CF mice and humans. Decreased sphingosine contributes to the susceptibility of CF tissues to M. abscessus infection, resulting in a higher incidence of infections in CF mice. Notably, treatment of M. abscessus with sphingosine demonstrated potent bactericidal activity against the pathogen. Most importantly, restoration of sphingosine levels in CF cells, whether human or mouse, and in the lungs of CF mice, provided protection against M. abscessus infections. Our findings demonstrate that pulmonary sphingosine levels are important in controlling M. abscessus infection. These results offer a promising therapeutic avenue for CF patients with pulmonary M. abscessus infections.


Asunto(s)
Fibrosis Quística , Infecciones por Mycobacterium no Tuberculosas , Humanos , Animales , Ratones , Fibrosis Quística/complicaciones , Fibrosis Quística/tratamiento farmacológico , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Esfingosina , Infecciones por Mycobacterium no Tuberculosas/complicaciones , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Micobacterias no Tuberculosas
7.
J Biol Chem ; 296: 100701, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33895135

RESUMEN

The acid sphingomyelinase/ceramide system has been shown to be important for cellular infection with at least some viruses, for instance, rhinovirus or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Functional inhibition of the acid sphingomyelinase using tricyclic antidepressants prevented infection of epithelial cells, for instance with SARS-CoV-2. The structure of ambroxol, that is, trans-4-[(2,4-dibromanilin-6-yl)-methyamino]-cyclohexanol, a mucolytic drug applied by inhalation, suggests that the drug might inhibit the acid sphingomyelinase and thereby infection with SARS-CoV-2. To test this, we used vesicular stomatitis virus pseudoviral particles presenting SARS-CoV-2 spike protein on their surface (pp-VSV-SARS-CoV-2 spike), a bona fide system for mimicking SARS-CoV-2 entry into cells. Viral uptake and formation of ceramide localization were determined by fluorescence microscopy, activity of the acid sphingomyelinase by consumption of [14C]sphingomyelin and ceramide was quantified by a kinase method. We found that entry of pp-VSV-SARS-CoV-2 spike required activation of acid sphingomyelinase and release of ceramide, events that were all prevented by pretreatment with ambroxol. We also obtained nasal epithelial cells from human volunteers prior to and after inhalation of ambroxol. Inhalation of ambroxol reduced acid sphingomyelinase activity in nasal epithelial cells and prevented pp-VSV-SARS-CoV-2 spike-induced acid sphingomyelinase activation, ceramide release, and entry of pp-VSV-SARS-CoV-2 spike ex vivo. The addition of purified acid sphingomyelinase or C16 ceramide restored entry of pp-VSV-SARS-CoV-2 spike into ambroxol-treated epithelial cells. We propose that ambroxol might be suitable for clinical studies to prevent coronavirus disease 2019.


Asunto(s)
Ambroxol/farmacología , Antivirales/farmacología , SARS-CoV-2/efectos de los fármacos , Esfingomielina Fosfodiesterasa/genética , Vesiculovirus/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Administración por Inhalación , Animales , Transporte Biológico , Ceramidas/metabolismo , Chlorocebus aethiops , Reposicionamiento de Medicamentos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/enzimología , Células Epiteliales/virología , Expectorantes , Expresión Génica , Humanos , Cultivo Primario de Células , Virus Reordenados/efectos de los fármacos , Virus Reordenados/fisiología , SARS-CoV-2/fisiología , Esfingomielina Fosfodiesterasa/antagonistas & inhibidores , Esfingomielina Fosfodiesterasa/metabolismo , Esfingomielinas/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero , Vesiculovirus/fisiología
8.
J Biol Chem ; 296: 100650, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33839155

RESUMEN

Most patients with cystic fibrosis (CF) suffer from acute and chronic pulmonary infections with bacterial pathogens, which often determine their life quality and expectancy. Previous studies have demonstrated a downregulation of the acid ceramidase in CF epithelial cells resulting in an increase of ceramide and a decrease of sphingosine. Sphingosine kills many bacterial pathogens, and the downregulation of sphingosine seems to determine the infection susceptibility of cystic fibrosis mice and patients. It is presently unknown how deficiency of the cystic fibrosis transmembrane conductance regulator (CFTR) connects to a marked downregulation of the acid ceramidase in human and murine CF epithelial cells. Here, we employed quantitative PCR, western blot analysis, and enzyme activity measurements to study the role of IRF8 for acid ceramidase regulation. We report that genetic deficiency or functional inhibition of CFTR/Cftr results in an upregulation of interferon regulatory factor 8 (IRF8) and a concomitant downregulation of acid ceramidase expression with CF and an increase of ceramide and a reduction of sphingosine levels in tracheal and bronchial epithelial cells from both human individuals or mice. CRISPR/Cas9- or siRNA-mediated downregulation of IRF8 prevented changes of acid ceramidase, ceramide, and sphingosine in CF epithelial cells and restored resistance to Pseudomonas aeruginosa infections, which is one of the most important and common pathogens in lung infection of patients with CF. These studies indicate that CFTR deficiency causes a downregulation of acid ceramidase via upregulation of IRF8, which is a central pathway to control infection susceptibility of CF cells.


Asunto(s)
Ceramidasa Ácida/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística/microbiología , Células Epiteliales/microbiología , Factores Reguladores del Interferón/metabolismo , Pulmón/microbiología , Infecciones por Pseudomonas/microbiología , Ceramidasa Ácida/genética , Animales , Ceramidas/metabolismo , Fibrosis Quística/inmunología , Fibrosis Quística/metabolismo , Fibrosis Quística/patología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Humanos , Factores Reguladores del Interferón/genética , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/patología , Ratones , Ratones Noqueados , Infecciones por Pseudomonas/genética , Infecciones por Pseudomonas/metabolismo , Pseudomonas aeruginosa/aislamiento & purificación , Esfingosina/metabolismo
9.
J Neurochem ; 163(4): 357-369, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36227646

RESUMEN

Major depressive disorder (MDD) is a severe disease of unknown pathogenesis with a lifetime prevalence of ~10%. Therapy requires prolonged treatment that often fails. We have previously demonstrated that ceramide levels in the blood plasma of patients and in mice with experimental MDD are increased. Neutralization of blood plasma ceramide prevented experimental MDD in mice. Mechanistically, we demonstrated that blood plasma ceramide accumulated in endothelial cells of the hippocampus, inhibited phospholipase D (PLD) and thereby decreased phosphatidic acid in the hippocampus. Here, we demonstrate that phosphatidic acid binds to and controls the activity of phosphotyrosine phosphatase (PTP1B) in the hippocampus and thus determines tyrosine phosphorylation of a variety of cellular proteins including TrkB. Injection of PLD, phosphatidic acid, or inhibition of PTP1B abrogated MDD and normalized cellular tyrosine phosphorylation, including phosphorylation of TrkB and neurogenesis in the hippocampus. Most importantly, these treatments also rapidly normalized behavior of mice with experimental MDD. Since phosphatidic acid binds to and inhibits PTP1B, the lack of phosphatidic acid results in increased activity of PTP1B and thereby in reduced tyrosine phosphorylation of TrkB and other cellular proteins. Thus, our data indicate a novel pathogenetic mechanism of and a rapidly acting targeted treatment for MDD.


Asunto(s)
Trastorno Depresivo Mayor , Ácidos Fosfatidicos , Ratones , Animales , Ácidos Fosfatidicos/metabolismo , Ácidos Fosfatidicos/farmacología , Células Endoteliales/metabolismo , Fosforilación , Ceramidas , Tirosina/metabolismo
10.
Basic Res Cardiol ; 117(1): 43, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36038749

RESUMEN

Antidepressants have been reported to enhance stroke recovery independent of the presence of depressive symptoms. They have recently been proposed to exert their mood-stabilizing actions by inhibition of acid sphingomyelinase (ASM), which catalyzes the hydrolysis of sphingomyelin to ceramide. Their restorative action post-ischemia/reperfusion (I/R) still had to be defined. Mice subjected to middle cerebral artery occlusion or cerebral microvascular endothelial cells exposed to oxygen-glucose deprivation were treated with vehicle or with the chemically and pharmacologically distinct antidepressants amitriptyline, fluoxetine or desipramine. Brain ASM activity significantly increased post-I/R, in line with elevated ceramide levels in microvessels. ASM inhibition by amitriptyline reduced ceramide levels, and increased microvascular length and branching point density in wildtype, but not sphingomyelinase phosphodiesterase-1 ([Smpd1]-/-) (i.e., ASM-deficient) mice, as assessed by 3D light sheet microscopy. In cell culture, amitriptyline, fluoxetine, and desipramine increased endothelial tube formation, migration, VEGFR2 abundance and VEGF release. This effect was abolished by Smpd1 knockdown. Mechanistically, the promotion of angiogenesis by ASM inhibitors was mediated by small extracellular vesicles (sEVs) released from endothelial cells, which exhibited enhanced uptake in target cells. Proteomic analysis of sEVs revealed that ASM deactivation differentially regulated proteins implicated in protein export, focal adhesion, and extracellular matrix interaction. In vivo, the increased angiogenesis was accompanied by a profound brain remodeling response with increased blood-brain barrier integrity, reduced leukocyte infiltrates and increased neuronal survival. Antidepressive drugs potently boost angiogenesis in an ASM-dependent way. The release of sEVs by ASM inhibitors disclosed an elegant target, via which brain remodeling post-I/R can be amplified.


Asunto(s)
Amitriptilina , Vesículas Extracelulares , Amitriptilina/metabolismo , Amitriptilina/farmacología , Animales , Antidepresivos/metabolismo , Antidepresivos/farmacología , Encéfalo/metabolismo , Ceramidas/metabolismo , Ceramidas/farmacología , Desipramina/metabolismo , Desipramina/farmacología , Células Endoteliales/metabolismo , Vesículas Extracelulares/metabolismo , Fluoxetina/metabolismo , Fluoxetina/farmacología , Isquemia/metabolismo , Ratones , Proteómica
11.
Cereb Cortex ; 31(2): 1316-1333, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33043975

RESUMEN

Sphingolipids and enzymes of the sphingolipid rheostat determine synaptic appearance and signaling in the brain, but sphingolipid contribution to normal behavioral plasticity is little understood. Here we asked how the sphingolipid rheostat contributes to learning and memory of various dimensions. We investigated the role of these lipids in the mechanisms of two different types of memory, such as appetitively and aversively motivated memory, which are considered to be mediated by different neural mechanisms. We found an association between superior performance in short- and long-term appetitively motivated learning and regionally enhanced neutral sphingomyelinase (NSM) activity. An opposite interaction was observed in an aversively motivated task. A valence-dissociating role of NSM in learning was confirmed in mice with genetically reduced NSM activity. This role may be mediated by the NSM control of N-methyl-d-aspartate receptor subunit expression. In a translational approach, we confirmed a positive association of serum NSM activity with long-term appetitively motivated memory in nonhuman primates and in healthy humans. Altogether, these data suggest a new sphingolipid mechanism of de-novo learning and memory, which is based on NSM activity.


Asunto(s)
Encéfalo/enzimología , Péptidos y Proteínas de Señalización Intracelular/sangre , Memoria a Largo Plazo/fisiología , Memoria a Corto Plazo/fisiología , Animales , Biomarcadores/sangre , Callithrix , Estudios de Cohortes , Femenino , Humanos , Aprendizaje/fisiología , Masculino , Ratones , Ratones Transgénicos , Ratas , Ratas Wistar , Adulto Joven
12.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36555152

RESUMEN

This study investigated whether sphingosine is effective as prophylaxis against Aspergillus spp. and Candida spp. In vitro experiments showed that sphingosine is very efficacious against A. fumigatus and Nakeomyces glabrataa (formerly named C. glabrata). A mouse model of invasive aspergillosis showed that sphingosine exerts a prophylactic effect and that sphingosine-treated animals exhibit a strong survival advantage after infection. Furthermore, mechanistic studies showed that treatment with sphingosine leads to the early depolarization of the mitochondrial membrane potential (Δψm) and the generation of mitochondrial reactive oxygen species and to a release of cytochrome C within minutes, thereby presumably initiating apoptosis. Because of its very good tolerability and ease of application, inhaled sphingosine should be further developed as a possible prophylactic agent against pulmonary aspergillosis among severely immunocompromised patients.


Asunto(s)
Antifúngicos , Candida , Animales , Ratones , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Esfingosina/farmacología , Pruebas de Sensibilidad Microbiana , Aspergillus
13.
Int J Mol Sci ; 23(21)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36362409

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic continues to cause significant morbidity and mortality worldwide. Since a large portion of the world's population is currently unvaccinated or incompletely vaccinated and has limited access to approved treatments against COVID-19, there is an urgent need to continue research on treatment options, especially those at low cost and which are immediately available to patients, particularly in low- and middle-income countries. Prior in vitro and observational studies have shown that fluoxetine, possibly through its inhibitory effect on the acid sphingomyelinase/ceramide system, could be a promising antiviral and anti-inflammatory treatment against COVID-19. In this report, we evaluated the potential antiviral and anti-inflammatory activities of fluoxetine in a K18-hACE2 mouse model of SARS-CoV-2 infection, and against variants of concern in vitro, i.e., SARS-CoV-2 ancestral strain, Alpha B.1.1.7, Gamma P1, Delta B1.617 and Omicron BA.5. Fluoxetine, administrated after SARS-CoV-2 infection, significantly reduced lung tissue viral titres and expression of several inflammatory markers (i.e., IL-6, TNFα, CCL2 and CXCL10). It also inhibited the replication of all variants of concern in vitro. A modulation of the ceramide system in the lung tissues, as reflected by the increase in the ratio HexCer 16:0/Cer 16:0 in fluoxetine-treated mice, may contribute to explain these effects. Our findings demonstrate the antiviral and anti-inflammatory properties of fluoxetine in a K18-hACE2 mouse model of SARS-CoV-2 infection, and its in vitro antiviral activity against variants of concern, establishing fluoxetine as a very promising candidate for the prevention and treatment of SARS-CoV-2 infection and disease pathogenesis.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Animales , Ratones , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antivirales/farmacología , Antivirales/uso terapéutico , Ceramidas , Modelos Animales de Enfermedad , Fluoxetina/farmacología , Fluoxetina/uso terapéutico
14.
J Biol Chem ; 295(22): 7686-7696, 2020 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-32327486

RESUMEN

Sphingosine is a long-chain sphingoid base that has been shown to have bactericidal activity against many pathogens, including Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli We have previously demonstrated that sphingosine is present in nasal, tracheal, and bronchial epithelial cells and constitutes a central element of the defense of the airways against bacterial pathogens. Here, using assorted lipid-binding and cell biology assays, we demonstrate that exposing P. aeruginosa and S. aureus cells to sphingosine results in a very rapid, i.e. within minutes, permeabilization of the bacterial plasma membrane, resulting in leakiness of the bacterial cells, loss of ATP, and loss of bacterial metabolic activity. These alterations rapidly induced bacterial death. Mechanistically, we demonstrate that the presence of the protonated NH2 group in sphingosine, which is an amino-alcohol, is required for sphingosine's bactericidal activity. We also show that the protonated NH2 group of sphingosine binds to the highly negatively-charged lipid cardiolipin in bacterial plasma membranes. Of note, this binding was required for bacterial killing by sphingosine, as revealed by genetic experiments indicating that E. coli or P. aeruginosa strains that lack cardiolipin synthase are resistant to sphingosine, both in vitro and in vivo We propose that binding of sphingosine to cardiolipin clusters cardiolipin molecules in the plasma membrane of bacteria. This clustering results in the formation of gel-like or even crystal-like structures in the bacterial plasma membrane and thereby promotes rapid permeabilization of the plasma membrane and bacterial cell death.


Asunto(s)
Antibacterianos/farmacología , Cardiolipinas/metabolismo , Membrana Celular/metabolismo , Escherichia coli/crecimiento & desarrollo , Pseudomonas aeruginosa/crecimiento & desarrollo , Esfingosina/farmacología , Staphylococcus aureus/crecimiento & desarrollo , Cardiolipinas/genética , Membrana Celular/genética , Escherichia coli/genética , Pseudomonas aeruginosa/genética , Staphylococcus aureus/genética
15.
J Biol Chem ; 295(45): 15174-15182, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-32917722

RESUMEN

Sphingosine has been shown to prevent and eliminate bacterial infections of the respiratory tract, but it is unknown whether sphingosine can be also employed to prevent viral infections. To test this hypothesis, we analyzed whether sphingosine regulates the infection of cultured and freshly isolated ex vivo human epithelial cells with pseudoviral particles expressing SARS-CoV-2 spike (pp-VSV-SARS-CoV-2 spike) that served as a bona fide system mimicking SARS-CoV-2 infection. We demonstrate that exogenously applied sphingosine suspended in 0.9% NaCl prevents cellular infection with pp-SARS-CoV-2 spike. Pretreatment of cultured Vero epithelial cells or freshly isolated human nasal epithelial cells with low concentrations of sphingosine prevented adhesion of and infection with pp-VSV-SARS-CoV-2 spike. Mechanistically, we demonstrate that sphingosine binds to ACE2, the cellular receptor of SARS-CoV-2, and prevents the interaction of the receptor-binding domain of the viral spike protein with ACE2. These data indicate that sphingosine prevents at least some viral infections by interfering with the interaction of the virus with its receptor. Our data also suggest that further preclinical and finally clinical examination of sphingosine is warranted for potential use as a prophylactic or early treatment for coronavirus disease-19.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Esfingosina/farmacología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Animales , Células Cultivadas , Chlorocebus aethiops , Células HEK293 , Humanos , Mucosa Nasal/metabolismo , Mucosa Nasal/virología , Unión Proteica , SARS-CoV-2/patogenicidad , SARS-CoV-2/fisiología , Células Vero , Internalización del Virus/efectos de los fármacos
16.
Infect Immun ; 89(2)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33139382

RESUMEN

Previous studies have shown that sphingosine kills a variety of pathogenic bacteria, including Pseudomonas aeruginosa and Staphylococcus aureus Sphingosine concentrations are decreased in airway epithelial cells of cystic fibrosis (CF) mice, and this defect has been linked to the infection susceptibility of these mice. Here, we tested whether the genetic overexpression of acid ceramidase rescues cystic fibrosis mice from pulmonary infections with P. aeruginosa We demonstrate that the transgenic overexpression of acid ceramidase in CF mice corresponds to the overexpression of acid ceramidase in bronchial and tracheal epithelial cells and normalizes ceramide and sphingosine levels in bronchial and tracheal epithelial cells. In addition, the expression of ß1-integrin, which is ectopically expressed on the luminal surface of airway epithelial cells in cystic fibrosis mice, an alteration that is very important for mediating pulmonary P. aeruginosa infections in cystic fibrosis, is normalized in cystic fibrosis airways upon the overexpression of acid ceramidase. Most importantly, the overexpression of acid ceramidase protects cystic fibrosis mice from pulmonary P. aeruginosa infections. Infection of CF mice or CF mice that inhaled sphingosine with P. aeruginosa or a P. aeruginosa mutant that is resistant to sphingosine indicates that sphingosine and not a metabolite kills P. aeruginosa upon pulmonary infection. These studies further support the use of acid ceramidase and its metabolite sphingosine as potential treatments of cystic fibrosis.


Asunto(s)
Ceramidasa Ácida/genética , Ceramidasa Ácida/farmacología , Ceramidasa Ácida/uso terapéutico , Fibrosis Quística/complicaciones , Fibrosis Quística/tratamiento farmacológico , Infecciones por Pseudomonas/etiología , Infecciones por Pseudomonas/prevención & control , Animales , Fibrosis Quística/fisiopatología , Regulación Bacteriana de la Expresión Génica , Humanos , Ratones , Modelos Animales , Pseudomonas aeruginosa/efectos de los fármacos , Virulencia/genética
17.
Cell Physiol Biochem ; 55(5): 590-604, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34637202

RESUMEN

BACKGROUND/AIMS: Oxidative stress and infections by Pseudomonas aeruginosa (P. aeruginosa) are prominent in lungs of patients suffering from cystic fibrosis (CF). METHODS: The present study examines effects of P. aeruginosa on lipid peroxidation in human and mouse lungs, and cell death induced by P. aeruginosa in human airway epithelial cells. The role of the Ca2+ activated Cl- channel TMEM16A, the phospholipid scramblase TMEM16F, and the CFTR Cl- channel for ferroptotic cell death is examined. RESULTS: Lipid peroxidation was detected in human CF lungs, which correlated with bacterial infection. In vivo inoculation with P. aeruginosa or Staphylococcus aureus (S. aureus) induced lipid peroxidation in lungs of mice lacking expression of CFTR, and in lungs of wild type animals. Incubation of CFBE human airway epithelial cells with P. aeruginosa induced an increase in reactive oxygen species (ROS), causing lipid peroxidation and cell death independent of expression of wt-CFTR or F508del-CFTR. Knockdown of TMEM16A attenuated P. aeruginosa induced cell death. Antioxidants such as coenzyme Q10 and idebenone as well as the inhibitor of ferroptosis, ferrostatin-1, inhibited P. aeruginosa-induced cell death. CFBE cells expressing wtCFTR, but not F508del-CFTR, activated a basal Cl- conductance upon exposure to P. aeruginosa, which was caused by an increase in intracellular basal Ca2+ concentrations and activation of Ca2+-dependent adenylate cyclase. CONCLUSION: The data suggest an intrinsic pro-inflammatory phenotype in CF epithelial cells, while ferroptosis is observed in both non-CF and CF epithelial cells upon infection with P. aeruginosa. CF cells fail to activate fluid secretion in response to infection with P. aeruginosa. The use of antioxidants and inhibitors of ferroptosis is proposed as a treatment of pneumonia caused by infection with P. aeruginosa.


Asunto(s)
Fibrosis Quística/patología , Ferroptosis , Peroxidación de Lípido , Pulmón/patología , Infecciones por Pseudomonas/patología , Pseudomonas aeruginosa/fisiología , Animales , Línea Celular , Fibrosis Quística/complicaciones , Fibrosis Quística/metabolismo , Interacciones Huésped-Patógeno , Humanos , Ratones , Infecciones por Pseudomonas/complicaciones , Infecciones por Pseudomonas/metabolismo
18.
Am J Pathol ; 190(6): 1211-1223, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32194052

RESUMEN

Lysosomal acid ceramidase (Ac) has been shown to be critical for ceramide hydrolysis and regulation of lysosome function and cellular homeostasis. In the present study, we generated a knockout mouse strain (Asah1fl/fl/PodoCre) with a podocyte-specific deletion of the α subunit (main catalytic subunit) of Ac. Although no significant morphologic changes in glomeruli were observed in these mice under light microscope, severe proteinuria and albuminuria were found in these podocyte-specific knockout mice compared with control genotype littermates. Transmission electron microscopic analysis showed that podocytes of the knockout mice had distinctive foot process effacement and microvillus formation. These functional and morphologic changes indicate the development of nephrotic syndrome in mice bearing the Asah1 podocyte-specific gene deletion. Ceramide accumulation determined by liquid chromatography-tandem mass spectrometry was demonstrated in isolated glomeruli of Asah1fl/fl/PodoCre mice compared with their littermates. By crossbreeding Asah1fl/fl/PodoCre mice with Smpd1-/- mice, we also produced a double knockout strain, Smpd1-/-/Asah1fl/fl/PodoCre, that also lacks Smpd1, the acid sphingomyelinase that hydrolyzes sphingomyelin to ceramide. These mice exhibited significantly lower levels of glomerular ceramide with decreased podocyte injury compared with Asah1fl/fl/PodoCre mice. These results strongly suggest that lysosomal Ac in podocytes is essential for the maintenance of the structural and functional integrity of podocytes.


Asunto(s)
Ceramidasa Ácida/genética , Ceramidas/metabolismo , Glomérulos Renales/metabolismo , Síndrome Nefrótico/metabolismo , Podocitos/metabolismo , Ceramidasa Ácida/metabolismo , Animales , Glomérulos Renales/patología , Glomérulos Renales/ultraestructura , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión , Síndrome Nefrótico/genética , Síndrome Nefrótico/patología , Podocitos/patología , Podocitos/ultraestructura
19.
Clin Sci (Lond) ; 135(3): 515-534, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33479769

RESUMEN

In chronic kidney disease (CKD), hyperphosphatemia is a key factor promoting medial vascular calcification, a common complication associated with cardiovascular events and high mortality. Vascular calcification involves osteo-/chondrogenic transdifferentiation of vascular smooth muscle cells (VSMCs), but the complex signaling events inducing pro-calcific pathways are incompletely understood. The present study investigated the role of acid sphingomyelinase (ASM)/ceramide as regulator of VSMC calcification. In vitro, both, bacterial sphingomyelinase and phosphate increased ceramide levels in VSMCs. Bacterial sphingomyelinase as well as ceramide supplementation stimulated osteo-/chondrogenic transdifferentiation during control and high phosphate conditions and augmented phosphate-induced calcification of VSMCs. Silencing of serum- and glucocorticoid-inducible kinase 1 (SGK1) blunted the pro-calcific effects of bacterial sphingomyelinase or ceramide. Asm deficiency blunted vascular calcification in a cholecalciferol-overload mouse model and ex vivo isolated-perfused arteries. In addition, Asm deficiency suppressed phosphate-induced osteo-/chondrogenic signaling and calcification of cultured VSMCs. Treatment with the functional ASM inhibitors amitriptyline or fendiline strongly blunted pro-calcific signaling pathways in vitro and in vivo. In conclusion, ASM/ceramide is a critical upstream regulator of vascular calcification, at least partly, through SGK1-dependent signaling. Thus, ASM inhibition by repurposing functional ASM inhibitors to reduce the progression of vascular calcification during CKD warrants further study.


Asunto(s)
Transdiferenciación Celular , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Esfingomielina Fosfodiesterasa/farmacología , Calcificación Vascular/patología , Amitriptilina/farmacología , Animales , Células Cultivadas , Ceramidas/metabolismo , Condrogénesis/efectos de los fármacos , Fendilina/farmacología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Fosfatos/farmacología
20.
J Surg Res ; 267: 424-431, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34229130

RESUMEN

BACKGROUND: The primary goal of this study was to demonstrate that endotracheal tubes coated with antimicrobial lipids plus mucolytic or antimicrobial lipids with antibiotics plus mucolytic would significantly reduce pneumonia in the lungs of pigs after 72 hours of continuous mechanical ventilation compared to uncoated controls. MATERIALS AND METHODS: Eighteen female pigs were mechanically ventilated for up to 72 hours through uncoated endotracheal tubes, endotracheal tubes coated with the antimicrobial lipid, octadecylamine, and the mucolytic, N-acetylcysteine, or tubes coated with octadecylamine, N-acetylcysteine, doxycycline, and levofloxacin (6 pigs per group). No exogenous bacteria were inoculated into the pigs, pneumonia resulted from the pigs' endogenous oral flora. Vital signs were recorded every 15 minutes and arterial blood gas measurements were obtained for the duration of the experiment. Pigs were sacrificed either after completion of 72 hours of mechanical ventilation or just prior to hypoxic arrest. Lungs, trachea, and endotracheal tubes were harvested for analysis to include bacterial counts of lung, trachea, and endotracheal tubes, lung wet and dry weights, and lung tissue for histology. RESULTS: Pigs ventilated with coated endotracheal tubes were less hypoxic, had less bacterial colonization of the lungs, and survived significantly longer than pigs ventilated with uncoated tubes. Octadecylamine-N-acetylcysteine-doxycycline-levofloxacin coated endotracheal tubes had less bacterial colonization than uncoated or octadecylamine-N-acetylcysteine coated tubes. CONCLUSION: Endotracheal tubes coated with antimicrobial lipids plus mucolytic and antimicrobial lipids with antibiotics plus mucolytic reduced bacterial colonization of pig lungs after prolonged mechanical ventilation and may be an effective strategy to reduce ventilator-associated pneumonia.


Asunto(s)
Antiinfecciosos , Neumonía Asociada al Ventilador , Animales , Antibacterianos/uso terapéutico , Modelos Animales de Enfermedad , Femenino , Intubación Intratraqueal , Neumonía Asociada al Ventilador/microbiología , Neumonía Asociada al Ventilador/prevención & control , Respiración Artificial/efectos adversos , Porcinos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda