Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Cell Commun Signal ; 22(1): 398, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143495

RESUMEN

Ovarian granulosa cells are essential to gonadotrophin-regulated estrogen production, female cycle maintenance and fertility. The epithelial Na+ channel (ENaC) is associated with female fertility; however, whether and how it plays a role in ovarian cell function(s) remained unexplored. Here, we report patch-clamp and Na+ imaging detection of ENaC expression and channel activity in both human and mouse ovarian granulosa cells, which are promoted by pituitary gonadotrophins, follicle stimulating hormone (FSH) or luteinizing hormone (LH). Cre-recombinase- and CRISPR-Cas9-based granulosa-specific knockout of ENaC α subunit (Scnn1a) in mice resulted in failed estrogen elevation at early estrus, reduced number of corpus luteum, abnormally extended estrus phase, reduced litter size and subfertility in adult female mice. Further analysis using technologies including RNA sequencing and Ca2+ imaging revealed that pharmacological inhibition, shRNA-based knockdown or the knockout of ENaC diminished spontaneous or stimulated Ca2+ oscillations, lowered the capacity of intracellular Ca2+ stores and impaired FSH/LH-stimulated transcriptome changes for estrogen production in mouse and/or human granulosa cells. Together, these results have revealed a previously undefined role of ENaC in modulating gonadotrophin signaling in granulosa cells for estrogen homeostasis and thus female fertility.


Asunto(s)
Calcio , Canales Epiteliales de Sodio , Estrógenos , Fertilidad , Células de la Granulosa , Homeostasis , Femenino , Animales , Células de la Granulosa/metabolismo , Canales Epiteliales de Sodio/metabolismo , Canales Epiteliales de Sodio/genética , Humanos , Estrógenos/metabolismo , Ratones , Fertilidad/genética , Calcio/metabolismo , Gonadotropinas/metabolismo , Transducción de Señal , Ratones Noqueados , Señalización del Calcio
2.
BMC Infect Dis ; 24(1): 742, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39068389

RESUMEN

BACKGROUND: The COVID-19 has been shown to have negative effects on the cardiovascular system, but it is unclear how long these effects last in college students. This study aimed to assess the long-term impact of COVID-19 on arterial stiffness, endothelial function, and blood pressure in college students. METHODS: We enrolled 37 college students who had been infected with COVID-19 for more than 2 months. Brachial artery flow-mediated dilation (FMD) was used to assess endothelial function, while arterial stiffness was evaluated using the ABI Systems 100, including variables such as ankle-brachial index (ABI), brachial-ankle pulse wave velocity (baPWV), carotid-femoral pulse wave velocity (cfPWV), heart rate (HR), and blood pressure (BP). RESULTS: Our results showed that FMD was significantly impaired after COVID-19 infection (p < 0.001), while cfPWV and systolic blood pressure (SBP) were significantly increased (p < 0.05). Simple linear regression models revealed a significant negative correlation between post-COVID-19 measurement time and baPWV change (p < 0.01), indicating an improvement in arterial stiffness over time. However, there was a significant positive correlation between post-COVID-19 measurement time and diastolic blood pressure (DBP) change (p < 0.05), suggesting an increase in BP over time. There were no significant differences in ABI and HR between pre- and post-COVID-19 measurements, and no significant correlations were observed with other variables (p > 0.05). CONCLUSION: Our study demonstrated that COVID-19 has long-term detrimental effects on vascular function in college students. However, arterial stiffness tends to improve over time, while BP may exhibit the opposite trend.


Asunto(s)
Presión Sanguínea , COVID-19 , Estudiantes , Rigidez Vascular , Humanos , Rigidez Vascular/fisiología , COVID-19/fisiopatología , Masculino , Presión Sanguínea/fisiología , Femenino , Adulto Joven , Adulto , Endotelio Vascular/fisiopatología , SARS-CoV-2 , Análisis de la Onda del Pulso , Índice Tobillo Braquial , Arteria Braquial/fisiopatología , Universidades
3.
Biomed Mater ; 19(5)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39025105

RESUMEN

Endoscopic submucosal dissection (ESD) is the gold-standard surgical procedure for superficial esophageal cancer. A significant and challenging complication of this technique is post-ESD esophageal stricture. In this study, the feasibility of endoscopic catheter delivery of bioadhesive to esophageal lesions in a porcine model was tested. Injectable bioadhesive was composed of oxidized dextran (ODA) and chitosan hydrochloride (CS), its physicochemical properties, injectability, antibacterial activity, and cytocompatibility were investigated beforein vivotest. ODA-CS bioadhesive was delivered to the wound bed of the esophageal tissue using a custom-made catheter device after ESD in a porcine model. Our results show that the ODA-CS bioadhesive is of good injectability, tissue adhesive strength, antibacterial capacity, and blood compatibility.In vivodelivery was achieved by endoscopic spraying of ODA and CS in separate catheters fixed on the endoscopic probe. ODA and CS can be mixed well to allow in situ bioadhesive formation and firmly adhere to the esophageal wound surface. After two weeks, the bioadhesive maintained structural integrity and adhered to the surface of esophageal wounds. However, histological analysis reveals that the ODA-CS bioadhesive did not show improvement in attenuating inflammatory response after ESD. This pilot study demonstrates the feasibility of ODA-CS bioadhesive for shielding esophageal wounds after ESD, whereas efforts need to improve its anti-inflammatory activity to reduce fibrosis for stricture prevention.


Asunto(s)
Quitosano , Dextranos , Esófago , Adhesivos Tisulares , Animales , Proyectos Piloto , Porcinos , Quitosano/química , Adhesivos Tisulares/química , Dextranos/química , Ensayo de Materiales , Materiales Biocompatibles/química , Inyecciones , Resección Endoscópica de la Mucosa/métodos , Neoplasias Esofágicas/cirugía , Cicatrización de Heridas/efectos de los fármacos , Estenosis Esofágica
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda