Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Environ Pollut ; 345: 123476, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38311160

RESUMEN

A biochar-intensified phytoremediation experiment was designed to investigate the dynamic effects of different biochars on polycyclic aromatic hydrocarbon (PAH) removal in ryegrass rhizosphere contaminated soil. Maize and wheat straw biochar pyrolyzed at 300 °C and 500 °C were amended into PAH-contaminated soil, and then ryegrass (Lolium multiflorum L.) was planted for 90 days. Spearman's correlations among PAH removal, enzyme activity, abundance of PAH-ring hydroxylating dioxygenase (PAH-RHDα), and fungal and bacterial community structure were analyzed to elucidate the microbial degradation mechanisms during the combined remediation process. The results showed that 500 °C wheat straw biochar had higher surface area and more nutrients, and significantly accelerated the phytoremediation of PAHs (62.5 %), especially for high molecular weight PAH in contaminated soil. The activities of urease and dehydrogenase and the abundance of total and PAH-degrading bacteria, which improved with time by biochar and ryegrass, had a positive correlation with the removal rate of PAHs. Biochar enhanced the abundance of gram-negative (GN) PAH-RHDα genes. The GN PAH-degraders, Sphingomonas, bacteriap25, Haliangium, and Dongia may play vital roles in PAH degradation in biochar-amended rhizosphere soils. Principal coordinate analysis indicated that biochar led to significant differences in fungal community structures before 30 days, while the diversity of the bacterial community composition depended on planting ryegrass after 60 days. These findings imply that the structural reshaping of microbial communities results from incubation time and the selection of biochar and ryegrass in PAH-contaminated soils. Applying 500 °C wheat straw biochar could enhance the rhizoremediation of PAH-contaminated soil and benefit the soil microbial ecology.


Asunto(s)
Carbón Orgánico , Microbiota , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Hidrocarburos Policíclicos Aromáticos/análisis , Suelo/química , Biodegradación Ambiental , Contaminantes del Suelo/análisis , Microbiología del Suelo , Bacterias/genética , Bacterias/metabolismo
2.
J Hazard Mater ; 466: 133684, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38310844

RESUMEN

In order to evaluate the feasibility of rice husk and rice husk biochar on assisting phytoremediation of polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) co-contaminated soils, a 150-day pot experiment planted with alfalfa was designed. Rice husk and its derived biochar were applied to remediate a PAHs, Zn, and Cr co-contaminated soil. The effects of rice husk and biochar on the removal and bioavailability of PAHs and HMs, PAH-ring hydroxylating dioxygenase gene abundance and bacterial community structure in rhizosphere soils were investigated. Results suggested that rice husk biochar had better performance on the removal of PAHs and immobilization of HMs than those of rice husk in co-contaminated rhizosphere soil. The abundance of PAH-degraders, which increased with the culture time, was positively correlated with PAHs removal. Rice husk biochar decreased the richness and diversity of bacterial community, enhanced the growth of Steroidobacter, Bacillus, and Sphingomonas in rhizosphere soils. However, Steroidobacter, Dongia and Acidibacter were stimulated in rice husk amended soils. According to the correlation analysis, Steroidobacter and Mycobacterium may play an important role in PAHs removal and HMs absorption. The combination of rice husk biochar and alfalfa would be a promising method to remediate PAHs and HMs co-contaminated soil.


Asunto(s)
Metales Pesados , Oryza , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Biodegradación Ambiental , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes del Suelo/análisis , Microbiología del Suelo , Carbón Orgánico/química , Bacterias/genética , Suelo/química , Medicago sativa
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda