Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Toxicol Appl Pharmacol ; 486: 116917, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38555004

RESUMEN

Indole-3-acetic acid (IAA) is the most widely utilized plant growth regulator. Despite its extensive usage, IAA is often overlooked as an environmental pollutant. Due to its protein-binding nature, it also functions as a uremic toxin, contributing to its association with chronic kidney disease (CKD). While in vitro and epidemiological research have demonstrated this association, the precise impact of IAA on cardiovascular disease in animal models is unknown. The main objective of this study is to conduct a mechanistic analysis of the cardiotoxic effects caused by IAA using male Wistar albino rats as the experimental model. Three different concentrations of IAA (125, 250, 500 mg/kg) were administered for 28 days. The circulating IAA concentration mimicked previously observed levels in CKD patients. The administration of IAA led to a notable augmentation in heart size and heart-to-body weight ratio, indicating cardiac hypertrophy. Echocardiographic assessments supported these observations, revealing myocardial thickening. Biochemical and gene expression analyses further corroborated the cardiotoxic effects of IAA. Dyslipidemia, increased serum c-Troponin-I levels, decreased SOD and CAT levels, and elevated lipid peroxidation in cardiac tissue were identified. Moreover, increased expression of cardiac inflammatory biomarkers, including ANP, BNP, ß-MHC, Col-III, TNF-α, and NF-κB, was also found in the IAA-treated animals. Histopathological analysis confirmed the cardiotoxic nature of IAA, providing additional evidence of its adverse effects on cardiovascular health. These results offer insights into the potential negative impact of IAA on cardiovascular function, and elucidating the underlying mechanisms of its cardiotoxicity.


Asunto(s)
Cardiomegalia , Ácidos Indolacéticos , Ratas Wistar , Animales , Masculino , Ratas , Cardiomegalia/inducido químicamente , Cardiomegalia/patología , Estrés Oxidativo/efectos de los fármacos , Miocardio/metabolismo , Miocardio/patología , Biomarcadores/sangre , Peroxidación de Lípido/efectos de los fármacos , Cardiotoxicidad
2.
Int Microbiol ; 27(1): 25-35, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37335389

RESUMEN

Pseudomonas is a group of bacteria that can cause a wide range of infections, particularly in people with weakened immune systems, such as those with cystic fibrosis or who are hospitalized. It can also cause infections in the skin and soft tissue, including cellulitis, abscesses and wound infections. Antimicrobial peptides (AMPS) are the alternative strategy due to their broad spectrum of activity and act as effective treatment against multi-drug resistance pathogens. In this study, we have used an AMP, RW20 (1RPVKRKKGWPKGVKRGPPKW20). RW20 peptide is derived from the histone acetyltransferases (HATs) of the freshwater teleost, Channa striatus. The antimicrobial prediction tool has been utilized to identify the RW20 sequence from the HATs sequence. We synthesized the peptide to explore its mechanism of action. In an in vitro assay, RW20 was challenged against P. aeruginosa and we showed that RW20 displayed antibacterial properties and damaged the cell membrane. The mechanism of action of RW20 against P. aeruginosa has been established via field emission scanning electron microscopy (FESEM) as well as fluorescence assisted cell sorter (FACS) analysis. Both these experiments established that RW20 caused bacterial membrane disruption and cell death. Moreover, the impact of RW20, in-vivo, was tested against P. aeruginosa-infected zebrafish larvae. In the infected larvae, RW20 showed protective effect against P. aeruginosa by increasing the larval antioxidant enzymes, reducing the excess oxidative stress and apoptosis. Thus, it is possible that HATs-derived RW20 can be an efficient antimicrobial molecule against P. aeruginosa.


Asunto(s)
Antiinfecciosos , Infecciones por Pseudomonas , Humanos , Animales , Pseudomonas aeruginosa/metabolismo , Pez Cebra , Péptidos Catiónicos Antimicrobianos/farmacología , Larva , Histona Acetiltransferasas/metabolismo , Antibacterianos/farmacología , Antiinfecciosos/metabolismo , Infecciones por Pseudomonas/microbiología , Bacterias , Pruebas de Sensibilidad Microbiana
3.
Mol Biol Rep ; 51(1): 702, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822942

RESUMEN

BACKGROUND: The development of cost-effective, simple, environment-friendly biographene is an area of interest. To accomplish environmentally safe, benign culturing that has advantages over other methods to reduce the graphene oxide (GO), extracellular metabolites from actinobacteria associated with mushrooms were used for the first time. METHODS: Bactericidal effect of GO against methicillin-resistant Staphylococcus aureus, antioxidant activity, and hydroxyapatite-like bone layer formation, gene expression analysis and appropriate biodegradation of the microbe-mediated synthesis of graphene was studied. RESULTS: Isolated extracellular contents Streptomyces achromogenes sub sp rubradiris reduced nano-GO to graphene (rGO), which was further examined by spectrometry and suggested an efficient conversion and significant reduction in the intensity of all oxygen-containing moieties and shifted crystalline peaks. Electron microscopic results also suggested the reduction of GO layer. In addition, absence of significant toxicity in MG-63 cell line, intentional free radical scavenging prowess, liver and kidney histopathology, and Wistar rat bone regeneration through modulation of OPG/RANKL/RUNX2/ALP pathways show the feasibility of the prepared nano GO. CONCLUSIONS: The study demonstrates the successful synthesis of biographene from actinobacterial extracellular metabolites, its potential biomedical applications, and its promising role in addressing health and environmental concerns.


Asunto(s)
Regeneración Ósea , Grafito , Osteoprotegerina , Ligando RANK , Ratas Wistar , Grafito/farmacología , Animales , Regeneración Ósea/efectos de los fármacos , Ratas , Ligando RANK/metabolismo , Osteoprotegerina/metabolismo , Humanos , Materiales Biocompatibles/farmacología , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Actinobacteria/metabolismo , Antibacterianos/farmacología , Antioxidantes/metabolismo , Antioxidantes/farmacología , Transducción de Señal/efectos de los fármacos
4.
Mol Biol Rep ; 51(1): 89, 2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38184807

RESUMEN

BACKGROUND: Kappaphycus alvarezii, a marine red algae species, has gained significant attention in recent years due to its versatile bioactive compounds. Among these, κ-carrageenan (CR), a sulfated polysaccharide, exhibits remarkable antimicrobial properties. This study emphasizes the synergism attained by functionalizing zinc oxide nanoparticles (ZnO NPs) with CR, thereby enhancing its antimicrobial efficacy and target specificity against dental pathogens. METHODS: In this study, we synthesized ZnO-CR NPs and characterized them using SEM, FTIR, and XRD techniques to authenticate their composition and structural attributes. Moreover, our investigation revealed that ZnO-CR NPs possess better free radical scavenging capabilities, as evidenced by their effective activity in the DPPH and ABTS assay. RESULTS: The antimicrobial properties of ZnO-CR NPs were systematically assessed using a zone of inhibition assay against dental pathogens of S. aureus, S. mutans, E. faecalis, and C. albicans, demonstrating their substantial inhibitory effects at a minimal concentration of 50 µg/mL. We elucidated the interaction between CR and the receptors of dental pathogens to further understand their mechanism of action. The ZnO-CR NPs demonstrated a dose-dependent anticancer effect at concentrations of 5 µg/mL, 25 µg/mL, 50 µg/mL, and 100 µg/mL on KB cells, a type of Human Oral Epidermal Carcinoma. The mechanism by which ZnO-CA NPs induced apoptosis in KB cells was determined by observing an increase in the expression of the BCL-2, BAX, and P53 genes. CONCLUSION: Our findings unveil the promising potential of ZnO-CR NPs as a candidate with significant utility in dental applications. The demonstrated biocompatibility, potent antioxidant and antiapoptotic activity, along with impressive antimicrobial efficacy position these NPs as a valuable resource in the ongoing fight against dental pathogens and oral cancer.


Asunto(s)
Antiinfecciosos , Neoplasias de la Boca , Óxido de Zinc , Humanos , Óxido de Zinc/farmacología , Carragenina/farmacología , Staphylococcus aureus , Neoplasias de la Boca/tratamiento farmacológico , Apoptosis , Candida albicans
5.
Mol Biol Rep ; 51(1): 352, 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38400866

RESUMEN

BACKGROUND: Oral diseases are often attributed to dental pathogens such as S. aureus, S. mutans, E. faecalis, and C. albicans. In this research work, a novel approach was employed to combat these pathogens by preparing zinc oxide nanoparticles (ZnO NPs) capped with cinnamic acid (CA) plant compounds. METHODS: The synthesized ZnO-CA NPs were characterized using SEM, FTIR, and XRD to validate their composition and structural features. The antioxidant activity of ZnO-CA NPs was confirmed using DPPH and ABTS free radical scavenging assays. The antimicrobial effects of ZnO-CA NPs were validated using a zone of inhibition assay against dental pathogens. Autodock tool was used to identify the interaction of cinnamic acid with dental pathogen receptors. RESULTS: ZnO-CA NPs exhibited potent antioxidant activity in both DPPH and ABTS assays, suggesting their potential as powerful antioxidants. The minimal inhibitory concentration of ZnO-CA NPs against dental pathogens was found 25 µg/mL, indicating their effective antimicrobial properties. Further, ZnO-CA NPs showed better binding affinity and amino acid interaction with dental pathogen receptors. Also, the ZnO-CA NPs exhibited dose-dependent (5 µg/mL, 15 µg/mL, 25 µg/mL, and 50 µg/mL) anticancer activity against Human Oral Epidermal Carcinoma KB cells. The mechanism of action of apoptotic activity of ZnO-CA NPs on the KB cells was identified through the upregulation of BCL-2, BAX, and P53 genes. CONCLUSIONS: This research establishes the potential utility of ZnO-CA NPs as a promising candidate for dental applications. The potent antioxidant, anticancer, and effective antimicrobial properties of ZnO-CA NPs make them a valuable option for combating dental pathogens.


Asunto(s)
Antiinfecciosos , Benzotiazoles , Carcinoma , Cinamatos , Nanopartículas del Metal , Ácidos Sulfónicos , Óxido de Zinc , Humanos , Óxido de Zinc/farmacología , Óxido de Zinc/química , Antibacterianos/farmacología , Antibacterianos/química , Nanopartículas del Metal/química , Antioxidantes/farmacología , Staphylococcus aureus , Células KB , Antiinfecciosos/farmacología
6.
Mol Biol Rep ; 51(1): 423, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489102

RESUMEN

BACKGROUND: Oral health remains a significant global concern with the prevalence of oral pathogens and the increasing incidence of oral cancer posing formidable challenges. Additionally, the emergence of antibiotic-resistant strains has complicated treatment strategies, emphasizing the urgent need for alternative therapeutic approaches. Recent research has explored the application of plant compounds mediated with nanotechnology in oral health, focusing on the antimicrobial and anticancer properties. METHODS: In this study, curcumin (Cu)-mediated zinc oxide nanoparticles (ZnO NPs) were synthesized and characterized using SEM, EDAX, UV spectroscopy, FTIR, and XRD to validate their composition and structural features. The antioxidant and antimicrobial activity of ZnO-CU NPs was investigated through DPPH, ABTS, and zone of inhibition assays. Apoptotic assays and gene expression analysis were performed in KB oral squamous carcinoma cells to identify their anticancer activity. RESULTS: ZnO-CU NPs showcased formidable antioxidant prowess in both DPPH and ABTS assays, signifying their potential as robust scavengers of free radicals. The determined minimal inhibitory concentration of 40 µg/mL against dental pathogens underscored the compelling antimicrobial attributes of ZnO-CU NPs. Furthermore, the interaction analysis revealed the superior binding affinity and intricate amino acid interactions of ZnO-CU NPs with receptors on dental pathogens. Moreover, in the realm of anticancer activity, ZnO-CU NPs exhibited a dose-dependent response against Human Oral Epidermal Carcinoma KB cells at concentrations of 10 µg/mL, 20 µg/mL, 40 µg/mL, and 80 µg/mL. Unraveling the intricate mechanism of apoptotic activity, ZnO-CU NPs orchestrated the upregulation of pivotal genes, including BCL2, BAX, and P53, within the KB cells. CONCLUSIONS: This multifaceted approach, addressing both antimicrobial and anticancer activity, positions ZnO-CU NPs as a compelling avenue for advancing oral health, offering a comprehensive strategy for tackling both oral infections and cancer.


Asunto(s)
Antiinfecciosos , Benzotiazoles , Carcinoma de Células Escamosas , Curcumina , Nanopartículas del Metal , Neoplasias de la Boca , Ácidos Sulfónicos , Óxido de Zinc , Humanos , Óxido de Zinc/farmacología , Óxido de Zinc/química , Curcumina/farmacología , Nanopartículas del Metal/química , Antioxidantes/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Carcinoma de Células Escamosas/tratamiento farmacológico , Neoplasias de la Boca/tratamiento farmacológico , Biopelículas , Extractos Vegetales/química , Pruebas de Sensibilidad Microbiana
7.
Mol Biol Rep ; 51(1): 730, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864973

RESUMEN

BACKGROUND: Antimicrobial resistance has surged due to widespread antimicrobial drug use, prompting interest in biosynthesizing nanoparticles from marine-derived actinomycetes extracellular metabolites, valued for their diverse bioactive compounds. This approach holds promise for addressing the urgent need for novel antimicrobial agents. The current study aimed to characterize novel bioactive compounds from unexplored biodiversity hotspots, halophilic Streptomyces sp. isolated from mangrove sediment in the Pichavaram region, India. METHODS AND RESULTS: Streptomyces rochei SSCM102 was conclusively identified through morphological and molecular characterization. Synthesis of silver nanoparticles (AgNPs) from Streptomyces rochei SSCM102 was characterized using various techniques, including UV-Vis, XRD, SEM, EDX, and FT-IR. The UV-Vis spectrum of the reduced AgNPs exhibited a prominent peak at 380 nm, confirming the AgNPs. The UV-Vis spectrum confirmed the synthesis of AgNP, and SEM analysis revealed a cubic morphology with sizes ranging from 11 to 21 nm. The FTIR spectrum demonstrated a shift in frequency widths between 626 cm-1 and 3432 cm-1. The EDX analysis substantiated the presence of metallic silver, evident from a strong band at 1.44 keV. The synthesized AgNPs exhibited antibacterial efficacy against human pathogens Escherichia coli (64 ± 0.32 µg/ml), Klebsiella pneumoniae (32 ± 0.16 µg/ml), and Pseudomonas aeruginosa (16 ± 0.08 µg/ml) by MIC and MBC values of 128 ± 0.64 (µg/ml), 64 ± 0.32 (µg/ml) and 32 ± 0.16 (µg/ml), respectively. Additionally, at a concentration of 400 µg/ml, the AgNPs displayed a 72% inhibition of DPPH radicals, indicating notable antioxidant capacity. The LC50 value of 130 µg/mL indicates that the green-synthesized AgNPs have lower toxicity by Brine Shrimp Larvae assay. CONCLUSION: The study's novel approach to synthesizing eco-friendly silver nanoparticles using Halophilic Streptomyces rochei SSCM102 contributes significantly to the field of biomedical research and drug development. By demonstrating potent antibacterial properties and aligning with sustainability goals, these nanoparticles offer promising avenues for novel antibacterial therapies.


Asunto(s)
Antibacterianos , Sedimentos Geológicos , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Plata , Streptomyces , Streptomyces/metabolismo , Plata/química , Plata/farmacología , Nanopartículas del Metal/química , Antibacterianos/farmacología , Antibacterianos/química , Sedimentos Geológicos/microbiología , Tecnología Química Verde/métodos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , India , Bacterias/efectos de los fármacos
8.
J Biochem Mol Toxicol ; 38(1): e23520, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37632306

RESUMEN

Butylparaben (BP), a common chemical preservative in cosmetic and pharmaceutical products, has been known to induce oxidative stress and disrupt endocrine function in humans. In contrast, morin, a flavonoid derived from the Moraceae family, exhibits diverse pharmacological properties, including anti-inflammatory and antioxidant. Despite this, the protective role of morin against oxidative stress-induced damage in pancreatic islets remains unclear. Therefore, in this study, we aimed to investigate the potential protective mechanism of morin against oxidative stress-induced damage caused by BP in zebrafish larvae. To achieve this, we exposed the zebrafish larvae to butylparaben (2.5 mg/L) for 5 days, leading to increased oxidative stress and apoptosis in ß-cells. However, our compelling findings revealed that pretreatment with various concentrations of morin effectively reduced mortality and mitigated apoptosis and lipid peroxidation in ß-cells induced by BP exposure. In addition, zebrafish larvae exposed to BP for 5 days exhibited evident ß-cell damage. However, the pretreatment with morin showed promising effects by promoting ß-cell proliferation and lowering glucose levels. Furthermore, gene expression studies indicated that morin pretreatment normalized PEPCK expression while increasing insulin expression in BP-exposed larvae. In conclusion, our findings highlight the potential of morin as a protective agent against BP-induced ß-cell damage in zebrafish larvae. The observed improvements in oxidative stress, apoptosis, and gene expression patterns support the notion that morin could be further explored as a therapeutic candidate to counteract the detrimental effects of BP exposure on pancreatic ß-cells.


Asunto(s)
Flavonas , Insulina , Parabenos , Pez Cebra , Animales , Humanos , Larva , Antioxidantes/farmacología , Estrés Oxidativo , Flavonoides/farmacología , Flavonoides/uso terapéutico
9.
Drug Chem Toxicol ; : 1-18, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658397

RESUMEN

Industrial expansion and inadequate environmental safety measures are major contributors to environmental contamination, with heavy metals (HMs) and pharmaceutical waste playing crucial roles. Their negative effects are most noticeable in aquatic species and vegetation, where they accumulate in tissues and cause harmful results. Interactions between HMs and pharmaceutical molecules result in the production of metal-drug complexes (MDCs), which have the potential to disturb diverse ecosystems and their interdependence. However, present studies frequently focus on individual pollutants and their effects on specific environmental parameters, leaving out the cumulative effects of pollutants and their processes across several environmental domains. To address this gap, this review emphasizes the environmental sources of HMs, elucidates their emission pathways during anthropogenic activities, investigates the interactions between HMs and pharmaceutical substances, and defines the mechanisms underlying the formation of MDCs across various ecosystems. Furthermore, this review underscores the simultaneous occurrence of HMs and pharmaceutical waste across diverse ecosystems, including the atmosphere, soil, and water resources, and their incorporation into biotic organisms across trophic levels. It is important to note that these complex compounds represent a higher risk than individual contaminants.

10.
Drug Chem Toxicol ; : 1-16, 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38910278

RESUMEN

The growing concern about pollution and toxicity in aquatic as well as terrestrial organisms is predominantly caused due to waterborne exposure and poses a risk to environmental systems and human health. This study addresses the co-toxic effects of cadmium (Cd) and ketoprofen (KPF), representing heavy metal and pharmaceutical discharge pollutants, respectively, in aquatic ecosystems. A 96-h acute toxicity assessment was conducted using zebrafish embryos. The results indicated that high dosages of KPF (10, 15, and 100 µg/mL) and Cd (10 and 15 µg/mL) reduced survivability and caused concentration-dependent deformities such as scoliosis and yolk sac edema. These findings highlight the potential defects in development and metabolism, as evidenced by hemolysis tests demonstrating dose-dependent effects on blood cell integrity. Furthermore, this study employs adult zebrafish for a 42-day chronic exposure to Cd and KPF (10 and 100 µg/L) alone or combined (10 + 10 and 100 + 100 µg/L) to assess organ-specific Cd and KPF accumulation in tissue samples. Organ-specific accumulation patterns underscore complex interactions impacting respiratory, metabolic, and detoxification functions. Prolonged exposure induces reactive oxygen species formation, compromising antioxidant defense systems. Histological examinations reveal structural changes in gills, gastrointestinal, kidney, and liver tissues, suggesting impairments in respiratory, osmoregulatory, nutritional, and immune functions. This study emphasizes the importance of conducting extensive research on co-toxic effects to assist with environmental risk assessments and safeguard human health and aquatic ecosystems.

11.
Fish Physiol Biochem ; 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970761

RESUMEN

Environmental pollution, particularly from textile industry effluents, raises concerns globally. The aim of this study is to investigate the hepatotoxicity of Sudan Black B (SBB), a commonly used textile azo dye, on embryonic zebrafish. SBB exposure led to concentration-dependent mortality, reaching 100% at 0.8 mM, accompanied by growth retardation and diverse malformations in zebrafish. Biochemical marker analysis indicated adaptive responses to SBB, including increased SOD, CAT, NO, and LDH, alongside decreased GSH levels. Liver morphology analysis unveiled significant alterations, impacting metabolism and detoxification. Also, glucose level was declined and lipid level elevated in SBB-exposed in vivo zebrafish. Inflammatory gene expressions (TNF-α, IL-10, and INOS) showcased a complex regulatory interplay, suggesting an organismal attempt to counteract pro-inflammatory states during SBB exposure. The increased apoptosis revealed a robust hepatic cellular response due to SBB, aligning with observed liver tissue damage and inflammatory events. This multidimensional study highlights the intricate web of responses due to SBB exposure, which is emphasizing the need for comprehensive understanding and targeted mitigation strategies. The findings bear the implications for both aquatic ecosystems and potentially parallels to human health, underscoring the imperative for sustained research in this critical domain.

12.
BMC Oral Health ; 24(1): 715, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907185

RESUMEN

BACKGROUND: Dental pathogens play a crucial role in oral health issues, including tooth decay, gum disease, and oral infections, and recent research suggests a link between these pathogens and oral cancer initiation and progression. Innovative therapeutic approaches are needed due to antibiotic resistance concerns and treatment limitations. METHODS: We synthesized and analyzed piperine-coated zinc oxide nanoparticles (ZnO-PIP NPs) using UV spectroscopy, SEM, XRD, FTIR, and EDAX. Antioxidant and antimicrobial effectiveness were evaluated through DPPH, ABTS, and MIC assays, while the anticancer properties were assessed on KB oral squamous carcinoma cells. RESULTS: ZnO-PIP NPs exhibited significant antioxidant activity and a MIC of 50 µg/mL against dental pathogens, indicating strong antimicrobial properties. Interaction analysis revealed high binding affinity with dental pathogens. ZnO-PIP NPs showed dose-dependent anticancer activity on KB cells, upregulating apoptotic genes BCL2, BAX, and P53. CONCLUSIONS: This approach offers a multifaceted solution to combatting both oral infections and cancer, showcasing their potential for significant advancement in oral healthcare. It is essential to acknowledge potential limitations and challenges associated with the use of ZnO NPs in clinical applications. These may include concerns regarding nanoparticle toxicity, biocompatibility, and long-term safety. Further research and rigorous testing are warranted to address these issues and ensure the safe and effective translation of ZnO-PIP NPs into clinical practice.


Asunto(s)
Alcaloides , Apoptosis , Benzodioxoles , Biopelículas , Neoplasias de la Boca , Piperidinas , Alcamidas Poliinsaturadas , Óxido de Zinc , Proteína X Asociada a bcl-2 , Humanos , Alcaloides/farmacología , Antineoplásicos/farmacología , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Proteína X Asociada a bcl-2/metabolismo , Proteína X Asociada a bcl-2/efectos de los fármacos , Benzodioxoles/farmacología , Biopelículas/efectos de los fármacos , Línea Celular Tumoral , Células KB , Nanopartículas del Metal/uso terapéutico , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Rastreo , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/patología , Nanopartículas , Piperidinas/farmacología , Alcamidas Poliinsaturadas/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/efectos de los fármacos , Difracción de Rayos X , Óxido de Zinc/farmacología
13.
Arch Microbiol ; 205(6): 238, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37193831

RESUMEN

Kinases can be grouped into 20 families which play a vital role as a regulator of neoplasia, metastasis, and cytokine suppression. Human genome sequencing has discovered more than 500 kinases. Mutations of the kinase itself or the pathway regulated by kinases leads to the progression of diseases such as Alzheimer's, viral infections, and cancers. Cancer chemotherapy has made significant leaps in recent years. The utilization of chemotherapeutic agents for treating cancers has become difficult due to their unpredictable nature and their toxicity toward the host cells. Therefore, targeted therapy as a therapeutic option against cancer-specific cells and toward the signaling pathways is a valuable avenue of research. SARS-CoV-2 is a member of the Betacoronavirus genus that is responsible for causing the COVID pandemic. Kinase family provides a valuable source of biological targets against cancers and for recent COVID infections. Kinases such as tyrosine kinases, Rho kinase, Bruton tyrosine kinase, ABL kinases, and NAK kinases play an important role in the modulation of signaling pathways involved in both cancers and viral infections such as COVID. These kinase inhibitors consist of multiple protein targets such as the viral replication machinery and specific molecules targeting signaling pathways for cancer. Thus, kinase inhibitors can be used for their anti-inflammatory, anti-fibrotic activity along with cytokine suppression in cases of COVID. The main goal of this review is to focus on the pharmacology of kinase inhibitors for cancer and COVID, as well as ideas for future development.


Asunto(s)
COVID-19 , Neoplasias , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , SARS-CoV-2 , Neoplasias/tratamiento farmacológico , Citocinas
14.
Mol Biol Rep ; 50(10): 8705-8714, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37620738

RESUMEN

In the 1970s, Circular RNAs (CircRNAs) were first discovered in RNA viruses as viroids and were initially assumed to be RNA splicing defects. The roles and topologies of these circular RNA loops were later revealed using computer analysis and RNA-sequencing. They were found to demonstrate various functions, including protein scaffolding, parental gene regulation, microRNA sponges, and RNA-protein interactions. CircRNAs play a crucial role in controlling gene expression and are essential for biological development and illness detection, as demonstrated by their roles as miRNA sponges, endogenous RNAs, and potential biomarkers. Insulin resistance is caused by damage to ß-cells in the pancreatic islets, which reduces the body's response to the hormone insulin. This reduction in insulin response hinders glucose from entering cells and providing energy for critical processes. As a result, insulin-resistant cells elevate blood sugar levels, leading to diabetes. Diabetes, in turn, increases the risk of heart disease and stroke, which can damage the heart and arteries. Additionally, an excess of insulin can impact the brain's chemical balance, contributing to the development of Alzheimer's disease. Furthermore, oxidative stress created by damaged pancreatic cells during high blood sugar conditions may lead to the destruction of brain cells and the onset of Alzheimer's disease. The hypothesis of this review is to provide an overview of the most dominant ciRS-7 circRNA identified in pancreatic islet cell dysfunction and neurologic disorders, such as Alzheimer's disease. By considering ciRS-7 circRNA as a potential biomarker for diabetes, early detection and treatment of diabetes may be facilitated, potentially reducing the risk of Alzheimer's disease onset in the future.


Asunto(s)
Enfermedad de Alzheimer , Diabetes Mellitus , Insulinas , MicroARNs , Humanos , ARN Circular/genética , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Glucemia , ARN/genética , MicroARNs/genética , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/genética , Biomarcadores
15.
Mol Biol Rep ; 50(12): 9875-9886, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37856062

RESUMEN

BACKGROUND: Diabetic Mellitus is characterized by a lack or failure of insulin to bind to its target receptor or failure of the pancreas to yield insulin. This study evaluated the antihyperglycemic activity of 14-deoxy, 11, 12-didehydro andrographolide on streptozotocin-nicotinamide-induced type 2 diabetic rats. Diabetic conditions were induced by administering streptozotocin at a dosage of 45 mg/kg body weight and nicotinamide at a dosage of 110 mg/kg body weight through intraperitoneal injection. MATERIALS AND METHODS: Diabetic-induced rats were treated with 14-deoxy, 11, 12-didehydro andrographolide concentrations between 10 and 500 mg/kg body weight. The blood glucose level and body weight of the rats were periodically examined. The pancreas was isolated and the histopathological staining was performed after making fine sections of the pancreas using a microtome. The influence of 14-deoxy, 11, 12-didehydro andrographolide on the expression level of various insulin signaling cascades was determined with q-PCR and western blotting. RESULTS: The blood glucose level of the diabetic-induced rats was significantly (p < 0.05) higher when compared with the control group and resulted in a drop in the blood glucose level of the diabetic rats. Oral glucose level was also reduced in the treatment group and no significant reduction was noted in the untreated. The lipid profiling revealed that the atherogenic index and cholesterol ratio was increased in the diabetic group over the control group. Upregulation of the insulin cascades like IRTK and GLUT4 was observed by the q-PCR and upregulation of GLUT4 and IR-ß was observed by the western blot analysis. CONCLUSION: Overall, the finding indicates that 14-deoxy, 11, 12-didehydro andrographolide exhibited antihyperglycemic activity by modulating the expression of insulin cascades.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratas , Animales , Hipoglucemiantes , Estreptozocina/efectos adversos , Glucemia/metabolismo , Niacinamida/farmacología , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Insulina/metabolismo , Extractos Vegetales/farmacología , Diabetes Mellitus Tipo 2/inducido químicamente , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Peso Corporal
16.
Mol Biol Rep ; 51(1): 27, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38133875

RESUMEN

BACKGROUND: Polyethylene terephthalate (PET), a commonly used polymer in various food and plastic bag containers, has raised significant concerns regarding its environmental and human health risks. Despite its prevalent use, the impact of PET exposure on aquatic environments and its potential to induce neurotoxic conditions in species remain poorly understood. Furthermore, the mechanisms underlying amelioration through natural product intervention are not well-explored. In light of these gaps, our study aimed to elucidate the neurotoxic effects of PET in zebrafish through waterborne exposure, and to mitigate its neurological impact using luteolin-graphene oxide nanoparticles. METHODS AND RESULTS: Our investigation revealed that exposure to PET in water triggered adverse effects in zebrafish larvae, particularly in the head region. We observed heightened oxidative stress, lipid peroxidation, and cell death, accompanied by impaired antioxidant defense enzymes. Furthermore, abnormal levels of acetylcholine esterase and nitric oxide in the zebrafish brain indicated cognitive impairment. To address these issues, we explored the potential neuroprotective effects of luteolin-graphene oxide nanoparticles. These nanoparticles demonstrated efficacy in localizing within the zebrafish brain, enhancing their therapeutic impact against PET exposure. Treatment with luteolin-graphene oxide nanoparticles not only mitigated PET-induced neurological alterations but also exhibited a neuroprotective effect. This was evidenced by the regulation of pro-inflammatory cytokine gene expression in the zebrafish brain. Additionally, normalization of locomotory behavior in PET-exposed zebrafish following nanoparticle treatment underscored the potential effectiveness of luteolin-graphene oxide nanoparticles as a treatment against PET-induced neurotoxicity. CONCLUSIONS: In summary, our study emphasizes the urgent need to investigate the environmental and health risks associated with PET. We demonstrate the potential of luteolin-graphene oxide nanoparticles as an effective intervention against PET-induced neurotoxicity in zebrafish.


Asunto(s)
Nanopartículas , Pez Cebra , Animales , Humanos , Luteolina/farmacología , Tereftalatos Polietilenos/farmacología , Nanopartículas/toxicidad , Estrés Oxidativo , Encéfalo
17.
Mol Biol Rep ; 50(9): 7357-7369, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37450077

RESUMEN

BACKGROUND: Natural products are considered effective sources for new therapeutic research and development. The numerous therapeutic properties of natural substances in traditional medicine compel us to investigate the anti-cancer properties of Nimbin (N1) and its semi-natural analog Nimbic acid (N3) from Azadirachta indica against MG-63 Osteosarcoma cells. MATERIALS AND METHODS: The therapeutic efficacy of N1 and N3 were screened for their toxicity and cytotoxic activity using L6 myotubes, zebrafish larvae and MG-63 osteosarcoma cells. The mitochondrial membrane potential was evaluated using the Rhodamine 123 stain. Further, the nuclear and cellular damage was distinguished using Hoechst and Acridine orange/EtBr stain. The mechanism of cell cycle progression, cellular proliferation and caspase cascade activation was screened using scratch assay, flow cytometry, and mRNA expression analysis. RESULTS: The Nimbin and analogue N3 were found to be non-toxic to normal L6 cells (Rat skeletal muscles), exhibited cytotoxicity in MG-63 cells, and were exposed to be an active inhibitor of cell proliferation and migration. Analogs N1 and N3 induced negative mitochondrial membrane potential when stained with Rhodamine 123, leading to nuclear damage and apoptosis stimulation using AO/EtBr and Hoechst. Further, N1 and N3 induced cell cycle arrest in G0/G1 phase in flow cytometry using PI staining and induced apoptosis by activating the caspase cascade and upregulated Caspase 3 and caspase 9. CONCLUSION: The study demonstrated cytotoxic activity against MG-63 osteosarcoma cells while being non-toxic to normal L6 cells. These compounds inhibited cell proliferation and migration, induced mitochondrial dysfunction, nuclear damage, and apoptosis stimulation. Furthermore, N1 and N3 caused cell cycle arrest and activated the caspase cascade, ultimately leading to apoptosis. These findings indicate that N1 and N3 hold promise as potential candidates used alone or combined with existing drugs for further investigation and development as anti-cancer agents.


Asunto(s)
Antineoplásicos , Azadirachta , Osteosarcoma , Animales , Ratas , Caspasas , Rodamina 123/farmacología , Rodamina 123/uso terapéutico , Pez Cebra , Línea Celular Tumoral , Apoptosis , Proliferación Celular , Antineoplásicos/farmacología , Osteosarcoma/tratamiento farmacológico , Semillas
18.
Mol Biol Rep ; 50(12): 10485-10507, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37917415

RESUMEN

Mucormycosis, an extremely fatal fungal infection, is a major hurdle in the treatment of diabetes consequences. The increasing prevalence and restricted treatment choices urge the investigation of novel therapeutic techniques. Because of their effective antimicrobial characteristics and varied modes of action, fish-derived peptides have lately emerged as viable options in the fight against mucormycosis. This review examines the potential further application of fish-derived peptides in diagnosing and managing mucormycosis in relation to diabetic complications. First, we examine the pathophysiology of mucormycosis and the difficulties in treating it in diabetics. We emphasize the critical need for alternative therapeutic methods for tackling the limitations of currently available antifungal medicines. The possibility of fish-derived peptides as an innovative approach to combat mucormycosis is then investigated. These peptides, derived from several fish species, provide wide antimicrobial properties against a variety of diseases. They also have distinct modes of action, such as rupture of cell membranes, suppression of development, and modification of the host immunological response. Furthermore, we investigate the problems and prospects connected with the clinical application of fish-derived peptides. Ultimately, future advances in fish-derived peptides, offer interesting avenues for the management of mucormycosis in the context of diabetic comorbidities. More research and clinical trials are needed to properly investigate these peptide's therapeutic potential and pave the way for their adoption into future antifungal therapies.


Asunto(s)
Complicaciones de la Diabetes , Diabetes Mellitus , Mucormicosis , Animales , Mucormicosis/tratamiento farmacológico , Mucormicosis/microbiología , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Diabetes Mellitus/tratamiento farmacológico , Complicaciones de la Diabetes/tratamiento farmacológico
19.
J Biochem Mol Toxicol ; 37(1): e23223, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36106391

RESUMEN

Humans are exposed to obesity causing Bisphenol A in various ways, especially through diet and food containers. Bioactive peptides are already reported to have antioxidant, antidiabetic, and antiobesity properties, which can mimic the role of mediators involved in obesity prevention. The protective effect of a short molecule or peptide, WL15 from cysteine and glycine-rich protein 2 of a teleost of aquatic resource on Bisphenol A (BPA)-induced lipid accumulation in zebrafish larvae was investigated. BPA exposure disrupted the antioxidant enzymes, apoptosis, and nitric oxide and led to changes in biochemical markers including alkaline phosphatase, lactate dehydrogenase, lipid peroxidation, glutathione S-transferases, glutathione peroxidase, and reduced glutathione. However, WL15 inhibited the overproduction of oxidative stress, which correlates with its lipid-lowering potential. BPA-induced lipid accumulation in zebrafish showed an increase in triglyceride, cholesterol, and glucose level; simultaneously, WL15 treatment significantly reduced such accumulation in zebrafish. Evidenced by Oil red O staining and Nile red assay, WL15 inhibited lipid accumulation. At the same time, WL15 at 50 µM increases 2-(N-[7-nitrobenz-2-oxa-1,3-diazol-4-yl]amino)-2-deoxy-d-glucose (2NBDG) glucose uptake in zebrafish. In addition, gene expression studies in zebrafish larvae demonstrated that the WL15 peptide could play a crucial role in preventing lipid accumulation by downregulating the expression of lipogenesis-specific genes. These results revealed an interesting and novel property of WL15, suggesting its potential application in preventing lipid accumulation through the hypolipidemic and antioxidant properties.


Asunto(s)
Antioxidantes , Pez Cebra , Humanos , Animales , Pez Cebra/metabolismo , Antioxidantes/metabolismo , Cisteína/efectos adversos , Cisteína/metabolismo , Larva , Estrés Oxidativo , Compuestos de Bencidrilo/toxicidad , Glutatión/metabolismo , Obesidad/inducido químicamente , Triglicéridos , Glicina/metabolismo
20.
J Toxicol Environ Health A ; 86(19): 720-734, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37609830

RESUMEN

Ultraviolet B wavelength ray radiation (UVB) is an environmental stressor with detrimental effects to the aquatic and human systems but also enhances adverse effects when combined with several other environmental factors such as temperature and pollution. UV rays induce cellular oxidative damage and impair motility. This study aimed to examine the photo-protective activity of flavonoid luteolin against UV-B irradiation-induced oxidative stress and cellular damage using zebrafish. An in-vivo photoaging model was established using UV-B irradiation in zebrafish larvae exposed to 100 mJ/cm2. Data demonstrated that UV-B irradiation of swimming water enhanced production of ROS and superoxide anions as well as depleted total glutathione levels in zebrafish larvae. UV-B irradiation also triggered cellular damage and membrane rupture in zebra fish. Further, 100 mJ/cm2 of UV-B radiation exposure to adult-wild type zebrafish co-exposed with intraperitoneally (ip) injected luteolin upregulated the local neuroendocrine axes by activating vascular endothelial growth factor (VEGF) and elevating levels of pro-inflammatory cytokines IL-1ß and TNF-α. Histologically, UV-B irradiation induced skin lesions and locomotory defects with clumping and degeneration of brain glial cells. However, luteolin effectively inhibited the excess production of reactive oxygen species (ROS) and decreased superoxide anion levels induced by UV-B irradiation. Luteolin restored the depleted glutathione levels. In addition, luteolin blocked apoptosis and lipidperoxidation. Luteolin protected adult zebrafish by downregulating the pro-inflammatory cytokine protein expression levels and diminishing VEGF activation. Luteolin also alleviated locomotory defects by inhibiting activation of microglia and inflammatory responses by preventing accumulation of glial cells and vacuolation. Data demonstrate that luteolin may protect zebrafish from UV-B-induced photodamage through DNA-protective, antioxidant and anti-inflammatory responses.


Asunto(s)
Luteolina , Rayos Ultravioleta , Adulto , Animales , Humanos , Rayos Ultravioleta/efectos adversos , Luteolina/farmacología , Especies Reactivas de Oxígeno , Factor A de Crecimiento Endotelial Vascular , Pez Cebra , Citocinas , Glutatión , Larva
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda