Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Microsc ; 271(1): 69-83, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29630741

RESUMEN

Hyperspectral imaging (HSI) and classification are established methods that are being applied in new ways to the analysis of nanoscale materials in a variety of matrices. Typically, enhanced darkfield microscopy (EDFM)-based HSI data (also known as image datacubes) are collected in the wavelength range of 400-1000 nm for each pixel in a datacube. Utilising different spectral library (SL) creation methods, spectra from pixels in the datacube corresponding to known materials can be collected into reference spectral libraries (RSLs), which can be used to classify materials in datacubes of experimental samples using existing classification algorithms. In this study, EDFM-HSI was used to visualise and analyse industrial cerium oxide (CeO2 ; ceria) nanoparticles (NPs) in rat lung tissues and in aqueous suspension. Rats were exposed to ceria NPs via inhalation, mimicking potential real-world occupational exposures. The lung tissues were histologically prepared: some tissues were stained with hematoxylin and eosin (H&E) and some were left unstained. The goal of this study was to determine how HSI and classification results for ceria NPs were influenced by (1) the use of different RSL creation and classification methods and (2) the application of those methods to samples in different matrices (stained tissue, unstained tissue, or aqueous solution). Three different RSL creation methods - particle filtering (PF), manual selection, and spectral hourglass wizard (SHW) - were utilised to create the RSLs of known materials in unstained and stained tissue, and aqueous suspensions, which were then used to classify the NPs in the different matrices. Two classification algorithms - spectral angle mapper (SAM) and spectral feature fitting (SFF) - were utilised to determine the presence or absence of ceria NPs in each sample. The results from the classification algorithms were compared to determine how each influenced the classification results for samples in different matrices. The results showed that sample matrix and sample preparation significantly influenced the NP classification thresholds in the complex matrices. Moreover, considerable differences were observed in the classification results when utilising each RSL creation and classification method for each type of sample. Results from this study illustrate the importance of appropriately selecting HSI algorithms based on specific material and matrix characteristics in order to obtain optimal classification results. As HSI is increasingly utilised for NP characterisation for clinical, environmental and health and safety applications, this investigation is important for further refining HSI protocols while ensuring appropriate data collection and analysis.


Asunto(s)
Cerio/química , Nanopartículas del Metal/clasificación , Microscopía/métodos , Animales , Técnicas Histológicas , Pulmón/efectos de los fármacos , Pulmón/patología , Masculino , Nanopartículas del Metal/química , Ratas , Agua
2.
bioRxiv ; 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37986982

RESUMEN

Lung inflammation, caused by acute exposure to ozone (O3) - one of the six criteria air pollutants - is a significant source of morbidity in susceptible individuals. Alveolar macrophages (AMØs) are the most abundant immune cells in the normal lung and their number increases following O3 exposure. However, the role of AMØs in promoting or limiting O3-induced lung inflammation has not been clearly defined. Here, we used a mouse model of acute O3 exposure, lineage tracing, genetic knockouts, and data from O3-exposed human volunteers to define the role and ontogeny of AMØs during acute O3 exposure. Lineage tracing experiments showed that 12, 24, and 72 h after exposure to O3 (2 ppm) for 3h all AMØs were tissue-resident origin. Similarly, in humans exposed to FA and O3 (200 ppb) for 135 minutes, we did not observe ~21h post-exposure an increase in monocyte-derived AMØs by flow cytometry. Highlighting a role for tissue-resident AMØs, we demonstrate that depletion of tissue-resident AMØs with clodronate-loaded liposomes led to persistence of neutrophils in the alveolar space after O3 exposure, suggesting that impaired neutrophil clearance (i.e., efferocytosis) leads to prolonged lung inflammation. Moreover, depletion of tissue-resident AMØ demonstrated reduced clearance of intratracheally instilled apoptotic Jurkat cells, consistent with reduced efferocytosis. Genetic ablation of MerTK - a key receptor involved in efferocytosis - also resulted in impaired clearance of apoptotic neutrophils followed O3 exposure. Overall, these findings underscore the pivotal role of tissue-resident AMØs in resolving O3-induced inflammation via MerTK-mediated efferocytosis.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda