RESUMEN
BACKGROUND: Folate and vitamin B-12 are essential micronutrients involved in the donation of methyl groups in cellular metabolism. However, associations between intake of these nutrients and genome-wide DNA methylation levels have not been studied comprehensively in humans. OBJECTIVE: The aim of this study was to assess whether folate and/or vitamin B-12 intake are asssociated with genome-wide changes in DNA methylation in leukocytes. METHODS: A large-scale epigenome-wide association study of folate and vitamin B-12 intake was performed on DNA from 5841 participants from 10 cohorts using Illumina 450k arrays. Folate and vitamin B-12 intakes were calculated from food-frequency questionnaires (FFQs). Continuous and categorical (low compared with high intake) linear regression mixed models were applied per cohort, controlling for confounders. A meta-analysis was performed to identify significant differentially methylated positions (DMPs) and regions (DMRs), and a pathway analysis was performed on the DMR annotated genes. RESULTS: The categorical model resulted in 6 DMPs, which are all negatively associated with folate intake, annotated to FAM64A, WRAP73, FRMD8, CUX1, and LCN8 genes, which have a role in cellular processes including centrosome localization, cell proliferation, and tumorigenesis. Regional analysis showed 74 folate-associated DMRs, of which 73 were negatively associated with folate intake. The most significant folate-associated DMR was a 400-base pair (bp) spanning region annotated to the LGALS3BP gene. In the categorical model, vitamin B-12 intake was associated with 29 DMRs annotated to 48 genes, of which the most significant was a 1100-bp spanning region annotated to the calcium-binding tyrosine phosphorylation-regulated gene (CABYR). Vitamin B-12 intake was not associated with DMPs. CONCLUSIONS: We identified novel epigenetic loci that are associated with folate and vitamin B-12 intake. Interestingly, we found a negative association between folate and DNA methylation. Replication of these methylation loci is necessary in future studies.