Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Sensors (Basel) ; 22(12)2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35746247

RESUMEN

Extreme weather phenomena are on the rise due to ongoing climate change. Therefore, the need for irrigation in agriculture will increase, although it is already the largest consumer of water, a valuable resource. Soil moisture sensors can help to use water efficiently and economically. For this reason, we have recently presented a novel soil moisture sensor with a high sensitivity and broad measuring range. This device does not measure the moisture in the soil but the water available to plants, i.e., the soil water potential (SWP). The sensor consists of two highly porous (>69%) ceramic discs with a broad pore size distribution (0.5 to 200 µm) and a new circuit board system using a transmission line within a time-domain transmission (TDT) circuit. This detects the change in the dielectric response of the ceramic discs with changing water uptake. To prove the concept, a large number of field tests were carried out and comparisons were made with commercial soil water potential sensors. The experiments confirm that the sensor signal is correlated to the soil water potential irrespective of soil composition and is thus suitable for the optimization of irrigation systems.


Asunto(s)
Suelo , Agua , Agricultura , Porosidad , Agua/análisis
2.
Macromol Rapid Commun ; 34(8): 672-80, 2013 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-23504909

RESUMEN

Single-walled carbon nanotubes (SWCNTs) are pre-functionalized with a pyridinyl-based dithioester to undergo a hetero Diels-Alder (HDA) reaction with cyclopentadienyl end-capped poly(methyl)methacrylate (Mn = 2700 g mol(-1) , PDI = 1.14). Fourier transform infrared spectroscopy, thermogravimetric analysis, elemental analysis (EA), and X-ray photoelectron spectroscopy (XPS) evidence the success of the grafting process. The estimated resulting grafting density (from XPS and EA) via the HDA reaction increases by a factor of more than two (0.0774 chains·nm(-2) via XPS) compared with typical values obtained via a direct cyclopentadiene driven Diels-Alder conjugation onto non-functional SWCNTs under similar conditions.


Asunto(s)
Ciclopentanos/química , Nanotubos de Carbono/química , Polimetil Metacrilato/química , Reacción de Cicloadición , Esterificación , Oxidación-Reducción , Piridinas/química , Compuestos de Sulfhidrilo/química
3.
Nanomaterials (Basel) ; 11(7)2021 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-34199005

RESUMEN

The use of nanomaterials incorporated into plastic products is increasing steadily. By using nano-scaled filling materials, thermoplastics, such as polyethylene (PE), take advantage of the unique properties of nanomaterials (NM). The life cycle of these so-called nanocomposites (NC) usually ends with energetic recovery. However, the toxicity of these aerosols, which may consist of released NM as well as combustion-generated volatile compounds, is not fully understood. Within this study, model nanocomposites consisting of a PE matrix and nano-scaled filling material (TiO2, CuO, carbon nano tubes (CNT)) were produced and subsequently incinerated using a lab-scale model burner. The combustion-generated aerosols were characterized with regard to particle release as well as compound composition. Subsequently, A549 cells and a reconstituted 3D lung cell culture model (MucilAir™, Epithelix) were exposed for 4 h to the respective aerosols. This approach enabled the parallel application of a complete aerosol, an aerosol under conditions of enhanced particle deposition using high voltage, and a filtered aerosol resulting in the sole gaseous phase. After 20 h post-incubation, cytotoxicity, inflammatory response (IL-8), transcriptional toxicity profiling, and genotoxicity were determined. Only the exposure toward combustion aerosols originated from PE-based materials induced cytotoxicity, genotoxicity, and transcriptional alterations in both cell models. In contrast, an inflammatory response in A549 cells was more evident after exposure toward aerosols of nano-scaled filler combustion, whereas the thermal decomposition of PE-based materials revealed an impaired IL-8 secretion. MucilAir™ tissue showed a pronounced inflammatory response after exposure to either combustion aerosols, except for nanocomposite combustion. In conclusion, this study supports the present knowledge on the release of nanomaterials after incineration of nano-enabled thermoplastics. Since in the case of PE-based combustion aerosols no major differences were evident between exposure to the complete aerosol and to the gaseous phase, adverse cellular effects could be deduced to the volatile organic compounds that are generated during incomplete combustion of NC.

4.
Sci Rep ; 6: 31733, 2016 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-27557544

RESUMEN

Nanocomposite materials represent a success story of nanotechnology. However, development of nanomaterial fabrication still suffers from the lack of adequate analysis tools. In particular, achieving and maintaining well-dispersed particle distributions is a key challenge, both in material development and industrial production. Conventional methods like optical or electron microscopy need laborious, costly sample preparation and do not permit fast extraction of nanoscale structural information from statistically relevant sample volumes. Here we show that optical coherence tomography (OCT) represents a versatile tool for nanomaterial characterization, both in a laboratory and in a production environment. The technique does not require sample preparation and is applicable to a wide range of solid and liquid material systems. Large particle agglomerates can be directly found by OCT imaging, whereas dispersed nanoparticles are detected by model-based analysis of depth-dependent backscattering. Using a model system of polystyrene nanoparticles, we demonstrate nanoparticle sizing with high accuracy. We further prove the viability of the approach by characterizing highly relevant material systems based on nanoclays or carbon nanotubes. The technique is perfectly suited for in-line metrology in a production environment, which is demonstrated using a state-of-the-art compounding extruder. These experiments represent the first demonstration of multiscale nanomaterial characterization using OCT.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda