Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Nano Lett ; 24(26): 7972-7978, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38888269

RESUMEN

Despite the weak, van der Waals interlayer coupling, photoinduced charge transfer vertically across atomically thin interfaces can occur within surprisingly fast, sub-50 fs time scales. An early theoretical understanding of charge transfer is based on a noninteracting picture, neglecting excitonic effects that dominate optical properties of such materials. We employ an ab initio many-body perturbation theory approach, which explicitly accounts for the excitons and phonons in the heterostructure. Our large-scale first-principles calculations directly probe the role of exciton-phonon coupling in the charge dynamics of the WS2/MoS2 heterobilayer. We find that the exciton-phonon interaction induced relaxation time of photoexcited excitons at the K valley of MoS2 and WS2 is 67 and 15 fs at 300 K, respectively, which sets a lower bound to the intralayer-to-interlayer exciton transfer time and is consistent with experiment reports. We further show that electron-hole correlations facilitate novel transfer pathways that are otherwise inaccessible to noninteracting electrons and holes.

2.
Phys Rev Lett ; 132(12): 126902, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38579218

RESUMEN

Nonradiative exciton relaxation processes are critical for energy transduction and transport in optoelectronic materials, but how these processes are connected to the underlying crystal structure and the associated electron, exciton, and phonon band structures, as well as the interactions of all these particles, is challenging to understand. Here, we present a first-principles study of exciton-phonon relaxation pathways in pentacene, a paradigmatic molecular crystal and optoelectronic semiconductor. We compute the momentum- and band-resolved exciton-phonon interactions, and use them to analyze key scattering channels. We find that both exciton intraband scattering and interband scattering to parity-forbidden dark states occur on the same ∼100 fs timescale as a direct consequence of the longitudinal-transverse splitting of the bright exciton band. Consequently, exciton-phonon scattering exists as a dominant nonradiative relaxation channel in pentacene. We further show how the propagation of an exciton wave packet is connected with crystal anisotropy, which gives rise to the longitudinal-transverse exciton splitting and concomitant anisotropic exciton and phonon dispersions. Our results provide a framework for understanding the role of exciton-phonon interactions in exciton nonradiative lifetimes in molecular crystals and beyond.

3.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34417292

RESUMEN

Accurate prediction of fundamental band gaps of crystalline solid-state systems entirely within density functional theory is a long-standing challenge. Here, we present a simple and inexpensive method that achieves this by means of nonempirical optimal tuning of the parameters of a screened range-separated hybrid functional. The tuning involves the enforcement of an ansatz that generalizes the ionization potential theorem to the removal of an electron from an occupied state described by a localized Wannier function in a modestly sized supercell calculation. The method is benchmarked against experiment for a set of systems ranging from narrow band-gap semiconductors to large band-gap insulators, spanning a range of fundamental band gaps from 0.2 to 14.2 electronvolts (eV), and is found to yield quantitative accuracy across the board, with a mean absolute error of ∼0.1 eV and a maximal error of ∼0.2 eV.

4.
Nano Lett ; 23(9): 3971-3977, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37071728

RESUMEN

Exciton dynamics dictates the evolution of photoexcited carriers in photovoltaic and optoelectronic devices. However, interpreting their experimental signatures is a challenging theoretical problem due to the presence of both electron-phonon and many-electron interactions. We develop and apply here a first-principles approach to exciton dynamics resulting from exciton-phonon coupling in monolayer MoS2 and reveal the highly selective nature of exciton-phonon coupling due to the internal spin structure of excitons, which leads to a surprisingly long lifetime of the lowest-energy bright A exciton. Moreover, we show that optical absorption processes rigorously require a second-order perturbation theory approach, with photon and phonon treated on an equal footing, as proposed by Toyozawa and Hopfield. Such a treatment, thus far neglected in first-principles studies, gives rise to off-diagonal exciton-phonon self-energy, which is critical for the description of dephasing mechanisms and yields exciton line widths in excellent agreement with experiment.

5.
Nano Lett ; 23(10): 4274-4281, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37159934

RESUMEN

The intrinsic weak and highly nonlocal dielectric screening of two-dimensional materials is well-known to lead to high sensitivity of their optoelectronic properties to environment. Less studied theoretically is the role of free carriers in those properties. Here, we use ab initio GW and Bethe-Salpeter equation calculations, with a rigorous treatment of dynamical screening and local-field effects, to study the doping dependence of the quasiparticle and optical properties of a monolayer transition-metal dichalcogenide, 2H MoTe2. We predict a quasiparticle band gap renormalization of several hundreds of meV for experimentally attainable carrier densities and a similarly sizable decrease in the exciton binding energy. This results in an almost constant excitation energy for the lowest-energy exciton resonance with an increasing doping density. Using a newly developed and generally applicable plasmon-pole model and a self-consistent solution of the Bethe-Salpeter equation, we reveal the importance of accurately capturing both dynamical and local-field effects to understand detailed photoluminescence measurements.

6.
Phys Rev Lett ; 130(8): 086401, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36898125

RESUMEN

The spatial extent of excitons in molecular systems underpins their photophysics and utility for optoelectronic applications. Phonons are reported to lead to both exciton localization and delocalization. However, a microscopic understanding of phonon-induced (de)localization is lacking, in particular, how localized states form, the role of specific vibrations, and the relative importance of quantum and thermal nuclear fluctuations. Here, we present a first-principles study of these phenomena in solid pentacene, a prototypical molecular crystal, capturing the formation of bound excitons, exciton-phonon coupling to all orders, and phonon anharmonicity, using density functional theory, the ab initio GW-Bethe-Salpeter equation approach, finite-difference, and path integral techniques. We find that for pentacene zero-point nuclear motion causes uniformly strong localization, with thermal motion providing additional localization only for Wannier-Mott-like excitons. Anharmonic effects drive temperature-dependent localization, and, while such effects prevent the emergence of highly delocalized excitons, we explore the conditions under which these might be realized.

7.
Phys Rev Lett ; 127(6): 067401, 2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34420331

RESUMEN

The ab initio Bethe-Salpeter equation (BSE) approach, an established method for the study of excitons in materials, is typically solved in a limit where only static screening from electrons is captured. Here, we generalize this framework to include dynamical screening from phonons at lowest order in the electron-phonon interaction. We apply this generalized BSE approach to a series of inorganic lead halide perovskites, CsPbX_{3}, with X=Cl, Br, and I. We find that inclusion of screening from phonons significantly reduces the computed exciton binding energies of these systems. By deriving a simple expression for phonon screening effects, we reveal general trends for their importance in semiconductors and insulators, based on a hydrogenic exciton model. We demonstrate that the magnitude of the phonon screening correction in isotropic materials can be reliably predicted using four material specific parameters: the reduced effective mass, static and optical dielectric constants, and frequency of the most strongly coupled longitudinal-optical phonon mode. This framework helps to elucidate the importance of phonon screening and its relation to excitonic properties in a broad class of semiconductors.

8.
J Am Chem Soc ; 140(6): 2326-2335, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29392936

RESUMEN

Singlet fission is the spin-conserving process by which a singlet exciton splits into two triplet excitons. Singlet fission occurs via a correlated triplet pair intermediate, but direct evidence of this state has been scant, and in films of TIPS-pentacene, a small molecule organic semiconductor, even the rate of fission has been unclear. We use polarization-resolved transient absorption microscopy on individual crystalline domains of TIPS-pentacene to establish the fission rate and demonstrate that the initially created triplets remain bound for a surprisingly long time, hundreds of picoseconds, before separating. Furthermore, using a broadband probe, we show that it is possible to determine absorbance spectra of individual excited species in a crystalline solid. We find that triplet interactions perturb the absorbance, and provide evidence that triplet interaction and binding could be caused by the π-stacked geometry. Elucidating the relationship between the lattice structure and the electronic structure and dynamics has important implications for the creation of photovoltaic devices that aim to boost efficiency via singlet fission.

9.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 11): 2890-6, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25372680

RESUMEN

All evidence to date indicates that at T = 100 K all protein crystals exhibit comparable sensitivity to X-ray damage when quantified using global metrics such as change in scaling B factor or integrated intensity versus dose. This is consistent with observations in cryo-electron microscopy, and results because nearly all diffusive motions of protein and solvent, including motions induced by radiation damage, are frozen out. But how do the sensitivities of different proteins compare at room temperature, where radiation-induced radicals are free to diffuse and protein and lattice structures are free to relax in response to local damage? It might be expected that a large complex with extensive conformational degrees of freedom would be more radiation sensitive than a small, compact globular protein. As a test case, the radiation sensitivity of 70S ribosome crystals has been examined. At T = 100 and 300 K, the half doses are 64 MGy (at 3 Šresolution) and 150 kGy (at 5 Šresolution), respectively. The maximum tolerable dose in a crystallography experiment depends upon the initial or desired resolution. When differences in initial data-set resolution are accounted for, the former half dose is roughly consistent with that for model proteins, and the 100/300 K half-dose ratio is roughly a factor of ten larger. 70S ribosome crystals exhibit substantially increased resolution at 100 K relative to 300 K owing to cooling-induced ordering and not to reduced radiation sensitivity and slower radiation damage.


Asunto(s)
Ribosomas/efectos de la radiación , Thermus thermophilus/efectos de la radiación , Cristalización , Cristalografía por Rayos X , Tolerancia a Radiación , Temperatura , Rayos X
10.
ACS Nano ; 17(8): 7685-7694, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37043483

RESUMEN

Monolayer transition metal dichalcogenide (TMDC) semiconductors exhibit strong excitonic optical resonances, which serve as a microscopic, noninvasive probe into their fundamental properties. Like the hydrogen atom, such excitons can exhibit an entire Rydberg series of resonances. Excitons have been extensively studied in most TMDCs (MoS2, MoSe2, WS2, and WSe2), but detailed exploration of excitonic phenomena has been lacking in the important TMDC material molybdenum ditelluride (MoTe2). Here, we report an experimental investigation of excitonic luminescence properties of monolayer MoTe2 to understand the excitonic Rydberg series, up to 3s. We report a significant modification of emission energies with temperature (4 to 300 K), thereby quantifying the exciton-phonon coupling. Furthermore, we observe a strongly gate-tunable exciton-trion interplay for all the Rydberg states governed mainly by free-carrier screening, Pauli blocking, and band gap renormalization in agreement with the results of first-principles GW plus Bethe-Salpeter equation approach calculations. Our results help bring monolayer MoTe2 closer to its potential applications in near-infrared optoelectronics and photonic devices.

11.
Nat Nanotechnol ; 18(1): 29-35, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36543882

RESUMEN

Photoinduced charge transfer in van der Waals heterostructures occurs on the 100 fs timescale despite weak interlayer coupling and momentum mismatch. However, little is understood about the microscopic mechanism behind this ultrafast process and the role of the lattice in mediating it. Here, using femtosecond electron diffraction, we directly visualize lattice dynamics in photoexcited heterostructures of WSe2/WS2 monolayers. Following the selective excitation of WSe2, we measure the concurrent heating of both WSe2 and WS2 on a picosecond timescale-an observation that is not explained by phonon transport across the interface. Using first-principles calculations, we identify a fast channel involving an electronic state hybridized across the heterostructure, enabling phonon-assisted interlayer transfer of photoexcited electrons. Phonons are emitted in both layers on the femtosecond timescale via this channel, consistent with the simultaneous lattice heating observed experimentally. Taken together, our work indicates strong electron-phonon coupling via layer-hybridized electronic states-a novel route to control energy transport across atomic junctions.

12.
Nat Commun ; 12(1): 7287, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34911952

RESUMEN

Atomic spin centers in 2D materials are a highly anticipated building block for quantum technologies. Here, we demonstrate the creation of an effective spin-1/2 system via the atomically controlled generation of magnetic carbon radical ions (CRIs) in synthetic two-dimensional transition metal dichalcogenides. Hydrogenated carbon impurities located at chalcogen sites introduced by chemical doping are activated with atomic precision by hydrogen depassivation using a scanning probe tip. In its anionic state, the carbon impurity is computed to have a magnetic moment of 1 µB resulting from an unpaired electron populating a spin-polarized in-gap orbital. We show that the CRI defect states couple to a small number of local vibrational modes. The vibronic coupling strength critically depends on the spin state and differs for monolayer and bilayer WS2. The carbon radical ion is a surface-bound atomic defect that can be selectively introduced, features a well-understood vibronic spectrum, and is charge state controlled.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda