Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Plant Physiol ; 112(3): 1273-1280, 1996 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12226445

RESUMEN

The siderophore rhizoferrin, produced by the fungus Rhizopus arrhizus, was previously found to be as an efficient Fe source as Fe-ethylenediamine-di(o-hydroxphenylacetic acid) to strategy I plants. The role of this microbial siderophore in Fe uptake by strategy II plants is the focus of this research. Fe-rhizoferrin was found to be an efficient Fe source for barley (Hordeum vulgare L.) and corn (Zea mays L.). The mechanisms by which these Gramineae utilize Fe from Fe-rhizoferrin and from other chelators were studied. Fe uptake from 59Fe-rhizoferrin, 59Fe-ferrioxamine B, 59Fe-ethylenediaminetetraacetic acid, and 59Fe-2[prime]-deoxymugineic acid by barley plants grown in nutrient solution at pH 6.0 was examined during periods of high (morning) and low (evening) phytosiderophore release. Uptake and translocation rates from Fe chelates paralleled the diurnal rhythm of phytosiderophore release. In corn, however, similar uptake and translocation rates were observed both in the morning and in the evening. A constant rate of the phytosiderophore's release during 14 h of light was found in the corn cv Alice. The results presented support the hypothesis that Fe from Fe-rhizoferrin is taken up by strategy II plants via an indirect mechanism that involves ligand exchange between the ferrated microbial siderophore and phytosiderophores, which are then taken up by the plant. This hypothesis was verified by in vitro ligand-exchange experiments.

2.
FEBS Lett ; 438(3): 195-200, 1998 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-9827544

RESUMEN

Organophosphorus (OP) insecticides and nerve agents that contain P-S bond are relatively more resistant to enzymatic hydrolysis. Purified phenol oxidase (laccase) from the white rot fungus Pleurotus ostreatus (Po) together with the mediator 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonate) (ABTS) displayed complete and rapid oxidative degradation of the nerve agents VX and Russian VX (RVX) and the insecticide analog diisopropyl-Amiton with specific activity: k(sp) = 2200, 667 and 1833 nmol min(-1) mg(-1), respectively (pH 7.4, 37 degrees C). A molar ratio of 1:20 for OP/ABTS and 0.05 M phosphate at pH 7.4 provided the highest degradation rate of VX and RVX. The thermostable laccase purified from the fungus Chaetomium thermophilium (Ct) in the presence of ABTS caused a 52-fold slower degradation of VX with k(sp) = 42 nmol min(-1) mg(-1). The enzymatic biodegradation products were identified by 31P-NMR and GC/MS analysis.


Asunto(s)
Insecticidas/metabolismo , Compuestos Organofosforados/metabolismo , Oxidorreductasas/metabolismo , Pleurotus/enzimología , Benzotiazoles , Biodegradación Ambiental , Cinética , Lacasa , Compuestos Organotiofosforados , Oxidación-Reducción , Oxidorreductasas/aislamiento & purificación , Pleurotus/crecimiento & desarrollo , Especificidad por Sustrato , Ácidos Sulfónicos/metabolismo
3.
J Med Chem ; 41(10): 1671-8, 1998 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-9572892

RESUMEN

Biomimetic analogues 1 of the microbial siderophore (iron carrier) ferrichrome were labeled via piperazine with various fluorescent markers at a site not interfering with iron binding or receptor recognition (compounds 10-12). These iron carriers were built from a tetrahedral carbon symmetrically extended with three strands, each containing an amino acid (G = glycyl, A = alanyl, L = leucyl and P = phenylalanyl) and terminated by a hydroxamic acid, which together define an octahedral iron-binding domain. A fourth exogenous strand provided the site for connecting various fluorescent markers via a short bifunctional linker. Iron(III) titrations, along with fluorescence spectroscopy, generated quenching of fluorescence emission of some of the probes used. The quenching process fits the Perrin model which reinforces the intramolecular quenching process, postulated previously.1 All tested compounds, regardless of their probe size, polarity, or the linker binding them to the siderophore analogue, promote growth of Pseudomonas putida with the same efficacy as the nonlabeled analogues 1, with the added benefit of signaling microbial activity by fluorescence emission. All G derivatives of compounds 10-12 were found to parallel the behavior of natural ferrichrome, whereas A derivatives mediated only a modest iron(III) uptake by P. putida. Incubation of various Pseudomonas strains with iron(III)-loaded G derivatives resulted in the build-up of the labels' fluorescence in the culture medium to a much larger extent than from the corresponding A derivatives. The fluorescence buildup corresponds to iron utilization by the cells and the release of the fluorescent labeled desferrisiderophore from the cell to the media. The fact that the microbial activity of these compounds is not altered by attachment of various fluorescent markers via a bifunctional linker proposes their application as diagnostic tools for detecting and identifying pathogenic microorganisms.


Asunto(s)
Diseño de Fármacos , Ferricromo/química , Colorantes Fluorescentes/química , Quelantes del Hierro/química , Compuestos Férricos/química , Compuestos Férricos/metabolismo , Ferricromo/análogos & derivados , Ferricromo/síntesis química , Ferricromo/farmacología , Quelantes del Hierro/síntesis química , Quelantes del Hierro/farmacología , Imitación Molecular , Pseudomonas putida/efectos de los fármacos , Pseudomonas putida/crecimiento & desarrollo , Pseudomonas putida/metabolismo
4.
Bioresour Technol ; 107: 87-96, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22226593

RESUMEN

Olive mill wastewaters (OMW) were obtained at laboratory scale by milling olives from four cultivars grown at different irrigation levels and harvested at different times. Samples were compared based on wastewater quantity, pH, suspended matter, salinity, organic load, total phenols, NPK, and phytotoxicity. Principal component analysis discriminated between harvest times, regardless of olive cultivar, indicating substantial influence of fruit ripeness on OMW characteristics. OMW properties were affected both by the composition and the extraction efficiency of fruit water. As the fruit water content increased, the concentrations of solutes in the fruit water decreased, but the original fruit water composed a larger portion of the total wastewater volume. These contradicting effects resulted in lack of correlation between fruit water content and OMW properties. The significant effects shown for fruit ripeness, irrigation and cultivar on OMW characteristics indicate that olive horticultural conditions should be considered in future OMW management.


Asunto(s)
Riego Agrícola , Industria de Alimentos , Residuos Industriales , Olea , Contaminantes del Agua , Concentración de Iones de Hidrógeno
5.
Biotechnol Lett ; 28(18): 1425-9, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16823599

RESUMEN

Phellinus robustus produced both laccase (700-4,000 U l(-1)) and manganese peroxidase (MnP) (1,000-11,300 U l(-1)) in fermentation of nine food wastes, whereas Ganoderma adspersum produced only laccase (600-34,000 U l(-1)). Glucose provided high laccase and MnP activity of P. robustus but repressed enzyme production by G. adspersum. Ammonium sulphate and ammonium tartrate increased the P. robustus laccase yield (3-fold), whereas the accumulation of MnP was not enhanced by additional nitrogen.


Asunto(s)
Basidiomycota/enzimología , Ganoderma/enzimología , Residuos Industriales , Lacasa/metabolismo , Peroxidasas/metabolismo , Animales , Biomasa , Pollos , Citrus , Medios de Cultivo , Fibras de la Dieta , Represión Enzimática , Plumas , Fermentación , Industria de Alimentos , Glucosa/farmacología , Lacasa/biosíntesis , Lignina/metabolismo , Nitrógeno/metabolismo , Peroxidasas/biosíntesis
6.
Appl Environ Microbiol ; 59(12): 4115-20, 1993 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16349112

RESUMEN

Lignin degradation by Pleurotus ostreatus was studied under solid-state fermentation (SSF) in chemically defined medium containing various levels of Mn. Degradation of [C]lignin prepared from cotton branches to soluble products, as well as its mineralization to CO(2), was enhanced by the addition of Mn. The effect of malonate on lignin mineralization was most marked during the first 10 days of SSF, in a treatment amended with 73 muM Mn. A high concentration of Mn (4.5 mM) caused inhibition of both fungal growth and mineralization rates during the first 2 weeks of incubation. Addition of malonate reversed this effect because of chelation of Mn. Mn was found to precipitate in all treatments, with or without the addition of malonate. alpha-Keto-gamma-methiolbutyric acid cleavage to ethylene, an indication of OH production, was observed as early as 3 days of incubation in all treatments.

7.
Appl Environ Microbiol ; 61(8): 3057-62, 1995 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-7487038

RESUMEN

Practical utilization of the polysaccharides in the lignocellulosic complex is limited because of the high lignin content of the complex. In this study we focused on the effect of Mn on lignin and cellulose biodegradation during solid-state fermentation by the edible mushroom Pleurotus ostreatus. Preferential degradation of lignin was enhanced by the addition of Mn(II) to cotton stalks at concentrations ranging from 30 to 620 micrograms of Mn per g. This effect was most apparent when we compared mineralization rates of [14C] lignin with mineralization rates of [14C] cellulose. Enhanced selectivity was also observed when we analyzed residual organic matter at the end of the fermentation period by using crude fiber analysis. The cellulose fraction in the original material was 1.8 times larger than the cellulose fraction of lignin. The cellulose/lignin ratio increased during 32 days of solid-state fermentation from 2.5 in the control to 3.3 following the addition of Mn to the medium. The in vitro digestibility value for fermented cotton stalks was 53% of the dry matter. Addition of 600 micrograms of Mn per g to the cotton stalks resulted in a digestibility value of 65.4%. Enhancement of preferential lignin degradation could be result of either increased activity of the ligninolytic enzymes or production of Mn (III), which might preferentially degrade aromatic structures in the lignocellulosic complex.


Asunto(s)
Lignina/metabolismo , Polyporaceae/metabolismo , Biodegradación Ambiental/efectos de los fármacos , Dióxido de Carbono/metabolismo , Celulosa/química , Celulosa/metabolismo , Fermentación/efectos de los fármacos , Lignina/química , Manganeso/farmacología , Polyporaceae/efectos de los fármacos
8.
Appl Environ Microbiol ; 58(1): 119-24, 1992 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16348618

RESUMEN

The differential availabilities of the hydroxamate siderophores ferrioxamine B (FOB) and ferrichrome (FC) and the pseudobactin siderophores St3, 7NSK(2), and WCS 358 as sources of Fe for soil and rhizosphere bacteria were studied. About 20% of the total bacterial CFU from the rhizospheres of four plant species were able to use FOB as the sole Fe source in an Fe-deficient medium, while about 12, 10, 2, and > 1% were able to use FC and pseudobactins 7NSK(2), St3, and WCS 358, respectively. Of the 165 colonies isolated from plates containing pseudobactins, 64 were able to use the pseudobactin on which they were isolated as the sole Fe source in pure culture. Cross-feeding tests showed that almost all of these 64 strains were also able to use at least one of the other siderophores studied (pseudobactin, FOB, or FC). Pseudomonas putida StS2, Pseudomonas maltophilia 7NM1, and Vibrio fluvialis WS1, which were originally isolated on pseudobactins St3, 7NSK(2), and WCS 358, respectively, were selected for their ability to grow with pseudobactin St3 as the sole Fe source. They incorporated Fe mediated by pseudobactin St3 at various rates (71.5, 4, and 23 pmol/min/mg [dry weight] of cells, respectively). Similarly, P. putida St3 was shown to incorporate Fe mediated by FOB and FC. We suggest that the ability of bacteria to utilize a large variety of siderophores confers an ecological advantage.

9.
Appl Environ Microbiol ; 58(4): 1121-7, 1992 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16348683

RESUMEN

Lignocellulose degradation and activities related to lignin degradation were studied in the solid-state fermentation of cotton stalks by comparing two white rot fungi, Pleurotus ostreatus and Phanerochaete chrysosporium. P. chrysosporium grew vigorously, resulting in rapid, nonselective degradation of 55% of the organic components of the cotton stalks within 15 days. In contrast, P. ostreatus grew more slowly with obvious selectivity for lignin degradation and resulting in the degradation of only 20% of the organic matter after 30 days of incubation. The kinetics of C-lignin mineralization exhibited similar differences. In cultures of P. chrysosporium, mineralization ceased after 18 days, resulting in the release of 12% of the total radioactivity as CO(2). In P. ostreatus, on the other hand, 17% of the total radioactivity was released in a steady rate throughout a period of 60 days of incubation. Laccase activity was only detected in water extracts of the P. ostreatus fermentation. No lignin peroxidase activity was detected in either the water extract or liquid cultures of this fungus. 2-Keto-4-thiomethyl butyric acid cleavage to ethylene correlated to lignin degradation in both fungi. A study of fungal activity under solid-state conditions, in contrast to those done under defined liquid culture, may help to better understand the mechanisms involved in lignocellulose degradation.

10.
Appl Microbiol Biotechnol ; 58(5): 582-94, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11956739

RESUMEN

The genus Pleurotus comprises a group of edible ligninolytic mushrooms with medicinal properties and important biotechnological and environmental applications. The cultivation of Pleurotus spp is an economically important food industry worldwide which has expanded in the past few years. P. ostreatus is the third most important cultivated mushroom for food purposes. Nutritionally, it has unique flavor and aromatic properties; and it is considered to be rich in protein, fiber, carbohydrates, vitamins and minerals. Pleurotus spp are promising as medicinal mushrooms, exhibiting hematological, antiviral, antitumor, antibiotic, antibacterial, hypocholesterolic and immunomodulation activities. The bioactive molecules isolated from the different fungi are polysaccharides. One of the most important aspects of Pleurotus spp is related to the use of their ligninolytic system for a variety of applications, such as the bioconversion of agricultural wastes into valuable products for animal feed and other food products and the use of their ligninolytic enzymes for the biodegradation of organopollutants, xenobiotics and industrial contaminants. In this Mini-Review, we describe the properties of Pleurotus spp in relation to their biotechnological applications and potential.


Asunto(s)
Lignina/metabolismo , NADPH Oxidasas , Pleurotus , Biodegradación Ambiental , Biotecnología , Lacasa , NADH NADPH Oxidorreductasas/metabolismo , Oxidorreductasas/metabolismo , Peroxidasas/metabolismo , Pleurotus/clasificación , Pleurotus/enzimología , Pleurotus/metabolismo
11.
Environ Microbiol ; 3(5): 312-22, 2001 May.
Artículo en Inglés | MEDLINE | ID: mdl-11422318

RESUMEN

The white-rot fungus Pleurotus ostreatus produces both manganese-dependent peroxidase (MnP) and versatile peroxidase (VP) in non-manganese-amended peptone medium (PM). We studied the effect of Mn2+ supplementation on MnPs and VPs in P. ostreatus by analysing the enzymatic and transcript abundance profiles of the peroxidases, as well as the lignin mineralization rate. The fungus was grown in PM under solid-state conditions using perlite as an inert solid support. Mn2+ amendment resulted in a 1.7-fold increase in [14C]-lignin mineralization relative to unamended medium. Anion-exchange chromatography was used to resolve the fungal peroxidase's enzymatic activity profile. Five peaks (P1-P5) of VP and one peak (P6) of MnP activity were detected in unamended medium. In Mn2+-amended medium, a reduction in the activity of the VPs was observed. On the other hand, a sharp increase in the MnP activity level of peak P6 was detected. The P6 isoenzyme was purified and showed manganese-dependent peroxidation of phenolic substrates. Internal sequence analysis of the purified enzyme revealed 100% identity with the deduced amino acid sequence of P. ostreatus MnP3 (GenBank AB016519). The effect of Mn2+ on the relative abundance of gene transcripts of three VPs and one MnP from P. ostreatus was monitored using reverse transcription-polymerase chain reaction (RT-PCR) with oligonucleotide primer sets synthesized on the basis of non-conserved sequences of the different peroxidases. The reduction in VP gene transcript abundance and the increase in mnp3 transcript level were collinear with the changes observed in the enzyme activity profiles. These results indicate that the activity of peroxidases is regulated at the transcriptional level. We suggest that the expression of MnP and VP may be differentially regulated by the presence of Mn2+.


Asunto(s)
Agaricales/enzimología , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Manganeso/farmacología , Peroxidasas/genética , Peroxidasas/metabolismo , Transcripción Genética/efectos de los fármacos , Agaricales/genética , Secuencia de Aminoácidos , Medios de Cultivo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Isoenzimas/genética , Isoenzimas/aislamiento & purificación , Isoenzimas/metabolismo , Cinética , Lignina/metabolismo , Datos de Secuencia Molecular , Peroxidasas/aislamiento & purificación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia
12.
Appl Environ Microbiol ; 64(9): 3175-9, 1998 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-9726856

RESUMEN

Chaetomium thermophilium was isolated from composting municipal solid waste during the thermophilic stage of the process. C. thermophilium, a cellulolytic fungus, exhibited laccase activity when it was grown at 45 degreesC both in solid media and in liquid media. Laccase activity reached a peak after 24 h in liquid shake culture. Laccase was purified by ultrafiltration, anion-exchange chromatography, and affinity chromatography. The purified enzyme was identified as a glycoprotein with a molecular mass of 77 kDa and an isoelectric point of 5.1. The laccase was stable for 1 h at 70 degreesC and had half-lives of 24 and 12 h at 40 and 50 degreesC, respectively. The enzyme was stable at pH 5 to 10, and the optimum pH for enzyme activity was 6. The purified laccase efficiently catalyzed a wide range of phenolic substrates but not tyrosine. The highest levels of affinity were the levels of affinity to syringaldazine and hydroxyquinone. The UV-visible light spectrum of the purified laccase had a peak at 604 nm (i.e., Cu type I), and the activity was strongly inhibited by Cu-chelating agents. When the hydrophobic acid fraction (the humic fraction of the water-soluble organic matter obtained from municipal solid waste compost) was added to a reaction assay mixture containing laccase and guaiacol, polymerization took place and a soluble polymer was formed. C. thermophilium laccase, which is produced during the thermophilic stage of composting, can remain active for a long period of time at high temperatures and alkaline pH values, and we suggest that this enzyme is involved in the humification process during composting.


Asunto(s)
Chaetomium/enzimología , Sustancias Húmicas/metabolismo , Oxidorreductasas/aislamiento & purificación , Oxidorreductasas/metabolismo , Biodegradación Ambiental , Chaetomium/crecimiento & desarrollo , Chaetomium/aislamiento & purificación , Medios de Cultivo , Inhibidores Enzimáticos/farmacología , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Cinética , Lacasa , Oxidorreductasas/química , Polímeros/metabolismo , Especificidad por Sustrato , Temperatura
13.
Appl Environ Microbiol ; 61(5): 1833-8, 1995 May.
Artículo en Inglés | MEDLINE | ID: mdl-16535024

RESUMEN

This study characterizes the effect of oxygen concentration on the synthesis of ligninolytic enzymes by Phanerochaete chrysosporium immobilized on polyurethane foam cubes in a nonimmersed liquid culture system and maintained under different carbon-to-nitrogen (C/N) ratios and levels. Lignin peroxidase (LIP) activity was obtained in cultures exposed to air when the C/N ratio was low (7.47), i.e., when nitrogen levels were high (C/N = 56/45 mM) or carbon levels were low (C/N = 5.6/4.5 mM). At the low C/N ratio, the fungus was carbon starved and did not produce extracellular polysaccharides. At a high C/N ratio (153), i.e., under conditions of excess carbon (nitrogen limitation) (C/N = 56/2.2 mM), cultures exposed to air produced large amounts of polysaccharide, and LIP activity was detected only in cultures exposed to pure oxygen. Under high-nitrogen conditions, LIP production was 1,800 U/liter in cultures exposed to pure oxygen and 1,300 U/liter in cultures exposed to air, with H1 and H2 being the main isoenzymes. The oxygen level did not significantly alter the isoenzyme profile, nor did low-carbon conditions. The formation of manganese peroxidase was generally less affected by the oxygen level than that of LIP but was considerably reduced by a low C/N ratio. The effects of oxygen level and C/N ratio on the synthesis of glyoxal oxidase paralleled their effects on LIP synthesis except in the case of high nitrogen, which totally suppressed glyoxal oxidase activity.

14.
Appl Environ Microbiol ; 51(6): 1352-4, 1986 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16347090

RESUMEN

Pleurotus ostreatus ;Florida' was grown in submerged liquid culture. The biomass yield of the fungus, grown for 3 days in 2-liter fermentors, where the mycelial pellets measuring 5 mm in diameter were formed, was 11.7 g (dry weight)/liter. Comparing the chemical constituents of fruiting bodies produced on cotton straw and mycelial pellets revealed several similarities in total nitrogen, protein, glycogen, fatty acids, RNA, and ash content. Differences were observed in the contents of six amino acids. Although the total fatty acid content was similar, there were more saturated fatty acids in the mycelium. Cell wall composition, typical for basidiomycetes, was observed in both mycelium and fruiting bodies, with laminarin as the main polymer.

15.
Appl Environ Microbiol ; 62(1): 292-5, 1996 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16535219

RESUMEN

The white rot fungus Pleurotus ostreatus was able to mineralize to (sup14)CO(inf2) 7.0% of [(sup14)C]catechol, 3.0% of [(sup14)C]phenanthrene, 0.4% of [(sup14)C]pyrene, and 0.19% of [(sup14)C]benzo[a]pyrene by day 11 of incubation. It also mineralized [(sup14)C]anthracene (0.6%) much more slowly (35 days) and [(sup14)C]fluorene (0.19%) within 15 days. P. ostreatus did not mineralize fluoranthene. The activities of the enzymes considered to be part of the ligninolytic system, laccase and manganese-inhibited peroxidase, were observed during fungal growth in the presence of the various polycyclic aromatic hydrocarbons. Although activity of both enzymes was observed, no distinct correlation to polycyclic aromatic hydrocarbon degradation was found.

16.
Appl Environ Microbiol ; 63(3): 857-61, 1997 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16535551

RESUMEN

The extracellular lignin peroxidase (LIP) protein profile of the fungus Phanerochaete chrysosporium, grown in nonimmersed liquid culture under conditions of excess nitrogen, changed markedly with culture age. At peak LIP activity (day 4), the heme-protein profile in the extracellular fluid, analyzed by anion-exchange high-pressure liquid chromatography, was characterized by a predominance of the LIP isozymes H1 and H2, small amounts of H6 and H8, and other minor peaks, designated Ha and Hb. On day 5, the level of H1 increased and it became the dominant isozyme, with a corresponding decrease in the level of H2. Moreover, the relative levels of H6 and H8 decreased with corresponding increases in Ha and Hb levels. This change in LIP profile occurred extracellularly and resulted from the enzymatic dephosphorylation of LIP isozymes. An enzymatic fraction responsible for LIP isozyme dephosphorylation, termed LIP dephosphorylating (LpD) fraction, was partially purified from the culture fluid. Incubation of the LpD fraction with (sup32)P-labeled H2, H6, H8, and H10 isozymes separated from nitrogen-limited cultures resulted in the formation of the dephosphorylated isozymes H1, Ha, Hb, and Hc, respectively. Dephosphorylation did not significantly change the catalytic properties of the LIP isozymes with veratryl alcohol as a substrate. LIP dephosphorylation is therefore suggested to be a posttranslational modification process catalyzed extracellularly by the LpD activity.

17.
Appl Environ Microbiol ; 63(7): 2495-501, 1997 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16535634

RESUMEN

The enzymatic mechanisms involved in the degradation of phenanthrene by the white rot fungus Pleurotus ostreatus were examined. Phase I metabolism (cytochrome P-450 monooxygenase and epoxide hydrolase) and phase II conjugation (glutathione S-transferase, aryl sulfotransferase, UDP-glucuronosyltransferase, and UDP-glucosyltransferase) enzyme activities were determined for mycelial extracts of P. ostreatus. Cytochrome P-450 was detected in both cytosolic and microsomal fractions at 0.16 and 0.38 nmol min(sup-1) mg of protein(sup1), respectively. Both fractions oxidized [9,10-(sup14)C]phenanthrene to phenanthrene trans-9,10-dihydrodiol. The cytochrome P-450 inhibitors 1-aminobenzotriazole (0.1 mM), SKF-525A (proadifen, 0.1 mM), and carbon monoxide inhibited the cytosolic and microsomal P-450s differently. Cytosolic and microsomal epoxide hydrolase activities, with phenanthrene 9,10-oxide as the substrate, were similar, with specific activities of 0.50 and 0.41 nmol min(sup-1) mg of protein(sup-1), respectively. The epoxide hydrolase inhibitor cyclohexene oxide (5 mM) significantly inhibited the formation of phenanthrene trans-9,10-dihydrodiol in both fractions. The phase II enzyme 1-chloro-2,4-dinitrobenzene glutathione S-transferase was detected in the cytosolic fraction (4.16 nmol min(sup-1) mg of protein(sup-1)), whereas aryl adenosine-3(prm1)-phosphate-5(prm1)-phosphosulfate sulfotransferase (aryl PAPS sulfotransferase) UDP-glucuronosyltransferase, and UDP-glucosyltransferase had microsomal activities of 2.14, 4.25, and 4.21 nmol min(sup-1) mg of protein(sup-1), respectively, with low activity in the cytosolic fraction. However, when P. ostreatus culture broth incubated with phenanthrene was screened for phase II metabolites, no sulfate, glutathione, glucoside, or glucuronide conjugates of phenanthrene metabolites were detected. These experiments indicate the involvement of cytochrome P-450 monooxygenase and epoxide hydrolase in the initial phase I oxidation of phenanthrene to form phenanthrene trans-9,10-dihydrodiol. Laccase and manganese-independent peroxidase were not involved in the initial oxidation of phenanthrene. Although P. ostreatus had phase II xenobiotic metabolizing enzymes, conjugation reactions were not important for the elimination of hydroxylated phenanthrene.

18.
Enzyme Microb Technol ; 29(1): 34-41, 2001 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-11427233

RESUMEN

Ferulic acid (4-hydroxy-3-methoxycinnamic acid) (FA) was found to be a highly reactive substrate for lignin peroxidase (LIP), exhibiting a k(cat) of 41.7 s(-1). Despite the high reactivity, two modes of inactivation prevailed during the oxidation of FA. The first, H(2)O(2)-dependent inactivation, was evidenced by incomplete substrate oxidation and accumulation of LIP compound III (LIPIII), even at relatively low H(2)O(2) concentrations. This was attributed to the high turnover rate along with the inability of FA to revert LIPIII to the native state, as evidenced by pre-steady-state kinetics. H(2)O(2)-dependent inactivation could be avoided by inclusion of veratryl alcohol (VA), which efficiently reverts LIPIII to the native state. However, VA also mediated FA oxidation, and significantly decreased the reaction rate, which is unlike for previously reported VA-mediated reactions. The second mechanism of LIP inactivation was attributed to binding of phenoxy radicals or oxidation products to the enzyme and its extent directly correlated with the amount of FA consumed. This inactivation could be considerably suppressed by inclusion of gelatin. Therefore, during the oxidation of highly reactive phenolics, different kinds of protectors are required for efficient oxidation and maintaining LIP activity over time. This is of importance when considering emerging biotechnological applications for LIP.

19.
Appl Environ Microbiol ; 61(6): 2439-41, 1995 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16535058

RESUMEN

A Halomonas sp., a marine halophilic and oligotrophic bacterium, was grown on exudates of Dunaliella bardawil. The bacteria increased the solubility of Fe, thereby enhancing its availability to the algae. As a result, the algal growth rate increased. Because of these syntrophic relations, growth of the marine alga D. bardawil was facilitated at Fe levels that would otherwise induce Fe deficiency and inhibit algal growth.

20.
Appl Microbiol Biotechnol ; 65(1): 97-104, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15221232

RESUMEN

A two-step enrichment procedure led to the isolation of a strain of Rhodococcus ruber (C208) that utilized polyethylene films as sole carbon source. In liquid culture, C208 formed a biofilm on the polyethylene surface and degraded up to 8% (gravimetrically) of the polyolefin within 30 days of incubation. The bacterial adhesion to hydrocarbon assay and the salt aggregation test both showed that the cell-surface hydrophobicity of C208 was higher than that of three other isolates which were obtained from the same consortium but were less efficient than C208 in the degradation of polyethylene. Mineral oil, but not nonionic surfactants, enhanced the colonization of polyethylene and increased biodegradation by about 50%. Fluorescein diacetate (FDA) hydrolysis and protein content analysis were used to test the viability and biomass density of the C208 biofilm on the polyethylene, respectively. Both FDA activity and protein content of the biofilm in a medium containing mineral oil peaked 48-72 h after inoculation and then decreased sharply. This finding apparently reflected rapid utilization of the mineral oil adhering to the polyethylene. The remaining biofilm population continued to proliferate moderately and presumably played a major role in biodegradation of the polyethylene. Fourier transform infrared spectra of UV-photooxidized polyethylene incubated with C208 indicated that biodegradation was initiated by utilization of the carbonyl residues formed in the photooxidized polyethylene.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Polietileno/metabolismo , Rhodococcus/metabolismo , Biodegradación Ambiental , Medios de Cultivo , Rhodococcus/crecimiento & desarrollo , Rhodococcus/fisiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda