Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Virol ; 97(7): e0016123, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37367301

RESUMEN

Parvoviruses are among the smallest and superficially simplest animal viruses, infecting a broad range of hosts, including humans, and causing some deadly infections. In 1990, the first atomic structure of the canine parvovirus (CPV) capsid revealed a 26-nm-diameter T=1 particle made up of two or three versions of a single protein, and packaging about 5,100 nucleotides of single-stranded DNA. Our structural and functional understanding of parvovirus capsids and their ligands has increased as imaging and molecular techniques have advanced, and capsid structures for most groups within the Parvoviridae family have now been determined. Despite those advances, significant questions remain unanswered about the functioning of those viral capsids and their roles in release, transmission, or cellular infection. In addition, the interactions of capsids with host receptors, antibodies, or other biological components are also still incompletely understood. The parvovirus capsid's apparent simplicity likely conceals important functions carried out by small, transient, or asymmetric structures. Here, we highlight some remaining open questions that may need to be answered to provide a more thorough understanding of how these viruses carry out their various functions. The many different members of the family Parvoviridae share a capsid architecture, and while many functions are likely similar, others may differ in detail. Many of those parvoviruses have not been experimentally examined in detail (or at all in some cases), so we, therefore, focus this minireview on the widely studied protoparvoviruses, as well as the most thoroughly investigated examples of adeno-associated viruses.


Asunto(s)
Parvoviridae , Animales , Humanos , Cápside/ultraestructura , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , ADN Viral/metabolismo , Parvoviridae/genética , Parvoviridae/ultraestructura , Infecciones por Parvoviridae/metabolismo , Infecciones por Parvoviridae/virología , Dependovirus/genética , Dependovirus/metabolismo , Dependovirus/ultraestructura
2.
J Virol ; 97(6): e0009023, 2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-37199627

RESUMEN

Canine parvovirus (CPV) is a small nonenveloped single-stranded DNA virus that causes serious diseases in dogs worldwide. The original strain of the virus (CPV-2) emerged in dogs during the late 1970s due to a host range switch of a virus similar to the feline panleukopenia virus that infected another host. The virus that emerged in dogs had altered capsid receptor and antibody binding sites, with some changes affecting both functions. Further receptor and antibody binding changes arose when the virus became better adapted to dogs or to other hosts. Here, we used in vitro selection and deep sequencing to reveal how two antibodies with known interactions select for escape mutations in CPV. The antibodies bound two distinct epitopes, and one largely overlapped the host receptor binding site. We also generated mutated antibody variants with altered binding structures. Viruses were passaged with wild-type (WT) or mutated antibodies, and their genomes were deep sequenced during the selective process. A small number of mutations were detected only within the capsid protein gene during the first few passages of selection, and most sites remained polymorphic or were slow to go to fixation. Mutations arose both within and outside the antibody binding footprints on the capsids, and all avoided the transferrin receptor type 1 binding footprint. Many selected mutations matched those that have arisen in the natural evolution of the virus. The patterns observed reveal the mechanisms by which these variants have been selected in nature and provide a better understanding of the interactions between antibody and receptor selections. IMPORTANCE Antibodies protect animals against infection by many different viruses and other pathogens, and we are gaining new information about the epitopes that induce antibody responses against viruses and the structures of the bound antibodies. However, less is known about the processes of antibody selection and antigenic escape and the constraints that apply in this system. Here, we used an in vitro model system and deep genome sequencing to reveal the mutations that arose in the virus genome during selection by each of two monoclonal antibodies or their mutated variants. High-resolution structures of each of the Fab:capsid complexes revealed their binding interactions. The wild-type antibodies or their mutated variants allowed us to examine how changes in antibody structure influence the mutational selection patterns seen in the virus. The results shed light on the processes of antibody binding, neutralization escape, and receptor binding, and they likely have parallels for many other viruses.


Asunto(s)
Anticuerpos Antivirales , Sitios de Unión de Anticuerpos , Cápside , Parvovirus Canino , Animales , Perros , Cápside/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Epítopos/genética , Epítopos/análisis , Parvovirus Canino/genética , Parvovirus Canino/metabolismo , Mutación , Anticuerpos Antivirales/genética , Anticuerpos Antivirales/metabolismo , Sitios de Unión de Anticuerpos/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Antígenos Virales/metabolismo , Selección Genética
3.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34074770

RESUMEN

Canine parvovirus is an important pathogen causing severe diseases in dogs, including acute hemorrhagic enteritis, myocarditis, and cerebellar disease. Overlap on the surface of parvovirus capsids between the antigenic epitope and the receptor binding site has contributed to cross-species transmission, giving rise to closely related variants. It has been shown that Mab 14 strongly binds and neutralizes canine but not feline parvovirus, suggesting this antigenic site also controls species-specific receptor binding. To visualize the conformational epitope at high resolution, we solved the cryogenic electron microscopy (cryo-EM) structure of the Fab-virus complex. We also created custom software, Icosahedral Subparticle Extraction and Correlated Classification, to solve a Fab-virus complex with only a few Fab bound per capsid and visualize local structures of the Fab-bound and -unbound antigenic sites extracted from the same complex map. Our results identified the antigenic epitope that had significant overlap with the receptor binding site, and the structures revealed that binding of Fab induced conformational changes to the virus. We were also able to assign the order and position of attached Fabs to allow assessment of complementarity between the Fabs bound to different positions. This approach therefore provides a method for using cryo-EM to investigate complementarity of antibody binding.


Asunto(s)
Anticuerpos Antivirales/química , Sitios de Unión , Cápside/metabolismo , Fragmentos Fab de Inmunoglobulinas/química , Parvovirus Canino/fisiología , Unión Proteica/fisiología , Animales , Anticuerpos Antivirales/inmunología , Antígenos/metabolismo , Microscopía por Crioelectrón , Perros , Epítopos/genética , Epítopos/inmunología , Mutación , Dominios Proteicos
4.
J Virol ; 96(21): e0099022, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36255280

RESUMEN

Ubiquitous and abundant in ecosystems and microbiomes, gokushoviruses constitute a Microviridae subfamily, distantly related to bacteriophages ΦX174, α3, and G4. A high-resolution cryo-EM structure of gokushovirus ΦEC6098 was determined, and the atomic model was built de novo. Although gokushoviruses lack external scaffolding and spike proteins, which extensively interact with the ΦX174 capsid protein, the core of the ΦEC6098 coat protein (VP1) displayed a similar structure. There are, however, key differences. At each ΦEC6098 icosahedral 3-fold axis, a long insertion loop formed mushroom-like protrusions, which have been noted in lower-resolution gokushovirus structures. Hydrophobic interfaces at the bottom of these protrusions may confer stability to the capsid shell. In ΦX174, the N-terminus of the capsid protein resides directly atop the 3-fold axes of symmetry; however, the ΦEC6098 N-terminus stretched across the inner surface of the capsid shell, reaching nearly to the 5-fold axis of the neighboring pentamer. Thus, this extended N-terminus interconnected pentamers on the inside of the capsid shell, presumably promoting capsid assembly, a function performed by the ΦX174 external scaffolding protein. There were also key differences between the ΦX174-like DNA-binding J proteins and its ΦEC6098 homologue VP8. As seen with the J proteins, C-terminal VP8 residues were bound into a pocket within the major capsid protein; however, its N-terminal residues were disordered, likely due to flexibility. We show that the combined location and interaction of VP8's C-terminus and a portion of VP1's N-terminus are reminiscent of those seen with the ΦX174 and α3 J proteins. IMPORTANCE There is a dramatic structural and morphogenetic divide within the Microviridae. The well-studied ΦX174-like viruses have prominent spikes at their icosahedral vertices, which are absent in gokushoviruses. Instead, gokushovirus major coat proteins form extensive mushroom-like protrusions at the 3-fold axes of symmetry. In addition, gokushoviruses lack an external scaffolding protein, the more critical of the two ΦX174 assembly proteins, but retain an internal scaffolding protein. The ΦEC6098 virion suggests that key external scaffolding functions are likely performed by coat protein domains unique to gokushoviruses. Thus, within one family, different assembly paths have been taken, demonstrating how a two-scaffolding protein system can evolve into a one-scaffolding protein system, or vice versa.


Asunto(s)
Cápside , Microviridae , Cápside/química , Microvirus , Proteínas de la Cápside/metabolismo , Microscopía por Crioelectrón , Ecosistema , Microviridae/química , Microviridae/metabolismo , Bacteriófago phi X 174 , Ensamble de Virus
5.
Proc Natl Acad Sci U S A ; 116(41): 20462-20471, 2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31548398

RESUMEN

Canine parvovirus (CPV) is an important pathogen causing severe diseases in dogs, including acute hemorrhagic enteritis, myocarditis, and cerebellar disease. Cross-species transmission of CPV occurs as a result of mutations on the viral capsid surface that alter the species-specific binding to the host receptor, transferrin receptor type-1 (TfR). The interaction between CPV and TfR has been extensively studied, and previous analyses have suggested that the CPV-TfR complex is asymmetric. To enhance the understanding of the underlying molecular mechanisms, we determined the CPV-TfR interaction using cryo-electron microscopy to solve the icosahedral (3.0-Å resolution) and asymmetric (5.0-Å resolution) complex structures. Structural analyses revealed conformational variations of the TfR molecules relative to the binding site, which translated into dynamic molecular interactions between CPV and TfR. The precise footprint of the receptor on the virus capsid was identified, along with the identity of the amino acid residues in the virus-receptor interface. Our "rock-and-roll" model provides an explanation for previous findings and gives insights into species jumping and the variation in host ranges associated with new pandemics in dogs.


Asunto(s)
Cápside/metabolismo , Parvovirus Canino/fisiología , Receptores de Transferrina/metabolismo , Receptores Virales/metabolismo , Virión/metabolismo , Animales , Cápside/química , Gatos , Microscopía por Crioelectrón , Perros , Conformación Proteica , Receptores de Transferrina/química , Receptores Virales/química , Especificidad de la Especie , Virión/química
6.
J Virol ; 93(6)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30626673

RESUMEN

Parvovirus-derived endogenous viral elements (EVEs) have been found in the genomes of many different animal species, resulting from integration events that may have occurred from more than 50 million years ago to much more recently. Here, we further investigate the properties of autonomous parvovirus EVEs and describe their relationships to contemporary viruses. While we did not find any intact capsid protein open reading frames in the integrated viral sequences, we examined three EVEs that were repaired to form full-length sequences with relatively few changes. These sequences were found in the genomes of Rattus norvegicus (brown rat), Mus spretus (Algerian mouse), and Apodemus sylvaticus (wood mouse). The R. norvegicus sequence was not present in the genomes of the closely related species R. rattus, R. tanezumi, R. exulans, and R. everetti, indicating that it was less than 2 million years old, and the M. spretus and A. sylvaticus sequences were not found in the published genomes of other mouse species, also indicating relatively recent insertions. The M. spretus VP2 sequence assembled into capsids, which had high thermal stability, bound the sialic acid N-acetylneuraminic acid, and entered murine L cells. The 3.89-Å structure of the M. spretus virus-like particles (VLPs), determined using cryo-electron microscopy, showed similarities to rodent and porcine parvovirus capsids. The repaired VP2 sequences from R. norvegicus and A. sylvaticus did not assemble as first prepared, but chimeras combining capsid surface loops from R. norvegicus with canine parvovirus assembled, allowing some of that capsid's structures and functions to be examined.IMPORTANCE Parvovirus endogenous viral elements (EVEs) that have been incorporated into the genomes of different animals represent remnants of the DNA sequences of ancient viruses that infected the ancestors of those animals millions of years ago, but we know little about their properties or how they differ from currently circulating parvoviruses. By expressing the capsid proteins of different parvovirus EVEs that were found integrated into the genomes of three different rodents, we can examine their structures and functions. A VP2 (major capsid protein) EVE sequence from a mouse genome assembled into capsids that had a similar structure and biophysical properties to extant parvoviruses and also bound sialic acids and entered rodent cells. Chimeras formed from combinations of canine parvovirus and portions of the parvovirus sequences from the brown rat genome allowed us to examine the structures and functions of the surface loops of that EVE capsid.


Asunto(s)
Proteínas de la Cápside/genética , Genoma/genética , Infecciones por Parvoviridae/genética , Parvovirus/genética , Roedores/genética , Roedores/virología , Animales , Cápside , Gatos , Línea Celular , Perros , Células HEK293 , Humanos , Ratones , Infecciones por Parvoviridae/virología , Ratas , Células Sf9 , Porcinos
7.
J Virol ; 94(1)2019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31619551

RESUMEN

Canine parvovirus (CPV) is a highly successful pathogen that has sustained pandemic circulation in dogs for more than 40 years. Here, integrating full-genome and deep-sequencing analyses, structural information, and in vitro experimentation, we describe the macro- and microscale features that accompany CPV's evolutionary success. Despite 40 years of viral evolution, all CPV variants are more than ∼99% identical in nucleotide sequence, with only a limited number (<40) of substitutions becoming fixed or widespread during this time. Notably, most substitutions in the major capsid protein (VP2) gene are nonsynonymous, altering amino acid residues that fall within, or adjacent to, the overlapping receptor footprint or antigenic regions, suggesting that natural selection has channeled much of CPV evolution. Among the limited number of variable sites, CPV genomes exhibit complex patterns of variation that include parallel evolution, reversion, and recombination, compromising phylogenetic inference. At the intrahost level, deep sequencing of viral DNA in original clinical samples from dogs and other host species sampled between 1978 and 2018 revealed few subconsensus single nucleotide variants (SNVs) above ∼0.5%, and experimental passages demonstrate that substantial preexisting genetic variation is not necessarily required for rapid host receptor-driven adaptation. Together, these findings suggest that although CPV is capable of rapid host adaptation, a relatively low mutation rate, pleiotropy, and/or a lack of selective challenges since its initial emergence have inhibited the long-term accumulation of genetic diversity. Hence, continuously high levels of inter- and intrahost diversity are not necessarily required for virus host adaptation.IMPORTANCE Rapid mutation rates and correspondingly high levels of intra- and interhost diversity are often cited as key features of viruses with the capacity for emergence and sustained transmission in a new host species. However, most of this information comes from studies of RNA viruses, with relatively little known about evolutionary processes in viruses with single-stranded DNA (ssDNA) genomes. Here, we provide a unique model of virus evolution, integrating both long-term global-scale and short-term intrahost evolutionary processes of an ssDNA virus that emerged to cause a pandemic in a new host animal. Our analysis reveals that successful host jumping and sustained transmission does not necessarily depend on a high level of intrahost diversity nor result in the continued accumulation of high levels of long-term evolution change. These findings indicate that all aspects of the biology and ecology of a virus are relevant when considering their adaptability.


Asunto(s)
Proteínas de la Cápside/genética , ADN Viral/genética , Enfermedades de los Perros/epidemiología , Genoma Viral , Infecciones por Parvoviridae/veterinaria , Parvovirus Canino/genética , Proteínas no Estructurales Virales/genética , Adaptación Fisiológica/genética , Animales , Evolución Biológica , Proteínas de la Cápside/clasificación , Proteínas de la Cápside/metabolismo , ADN Viral/metabolismo , Enfermedades de los Perros/transmisión , Enfermedades de los Perros/virología , Perros , Zorros/virología , Especificidad del Huésped/genética , Modelos Moleculares , Mutación , Infecciones por Parvoviridae/epidemiología , Infecciones por Parvoviridae/transmisión , Infecciones por Parvoviridae/virología , Parvovirus Canino/clasificación , Parvovirus Canino/patogenicidad , Filogenia , Conformación Proteica , Perros Mapache/virología , Mapaches/virología , Proteínas no Estructurales Virales/clasificación , Proteínas no Estructurales Virales/metabolismo , Secuenciación Completa del Genoma
8.
J Virol ; 92(13)2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29695427

RESUMEN

Antibody and receptor binding are key virus-host interactions that control host range and determine the success of infection. Canine and feline parvovirus capsids bind the transferrin receptor type 1 (TfR) to enter host cells, and specific structural interactions appear necessary to prepare the stable capsids for infection. Here, we define the details of binding, competition, and occupancy of wild-type and mutant parvovirus capsids with purified receptors and antibodies. TfR-capsid binding interactions depended on the TfR species and varied widely, with no direct relationship between binding affinity and infection. Capsids bound feline, raccoon, and black-backed jackal TfRs at high affinity but barely bound canine TfRs, which mediated infection efficiently. TfRs from different species also occupied capsids to different levels, with an estimated 1 to 2 feline TfRs but 12 black-backed jackal TfRs binding each capsid. Multiple alanine substitutions within loop 1 on the capsid surface reduced TfR binding but substitutions within loop 3 did not, suggesting that loop 1 directly engaged the TfR and loop 3 sterically affected that interaction. Binding and competition between different TfRs and/or antibodies showed complex relationships. Both antibodies 14 and E competed capsids off TfRs, but antibody E could also compete capsids off itself and antibody 14, likely by inducing capsid structural changes. In some cases, the initial TfR or antibody binding event affected subsequent TfR binding, suggesting that capsid structure changes occur after TfR or antibody binding and may impact infection. This shows that precise, host-specific TfR-capsid interactions, beyond simple attachment, are important for successful infection.IMPORTANCE Host receptor binding is a key step during viral infection and may control both infection and host range. In addition to binding, some viruses require specific interactions with host receptors in order to infect, and anti-capsid antibodies can potentially disrupt these interactions, leading to neutralization. Here, we examine the interactions between parvovirus capsids, the receptors from different hosts, and anti-capsid antibodies. We show that interactions between parvovirus capsids and host-specific TfRs vary in both affinity and in the numbers of receptors bound, with complex effects on infection. In addition, antibodies binding to two sites on the capsids had different effects on TfR-capsid binding. These experiments confirm that receptor and antibody binding to parvovirus capsids are complex processes, and the infection outcome is not determined simply by the affinity of attachment.


Asunto(s)
Anticuerpos Antivirales/metabolismo , Cápside/metabolismo , Mutación , Parvovirus/patogenicidad , Receptores de Transferrina/metabolismo , Animales , Cápside/inmunología , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Gatos , Línea Celular , Perros , Especificidad del Huésped , Humanos , Chacales , Modelos Moleculares , Parvovirus/inmunología , Mapaches , Receptores de Transferrina/química
9.
J Virol ; 91(2)2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27807242

RESUMEN

Since the first description of adenoviruses in bats in 2006, a number of micro- and megabat species in Europe, Africa, and Asia have been shown to carry a wide diversity of adenoviruses. Here, we report on the evolutionary, biological, and structural characterization of a novel bat adenovirus (BtAdV) recovered from a Rafinesque's big-eared bat (Corynorhinus rafinesquii) in Kentucky, USA, which is the first adenovirus isolated from North American bats. This virus (BtAdV 250-A) exhibits a close phylogenetic relationship with Canine mastadenovirus A (CAdV A), as previously observed with other BtAdVs. To further investigate the relationships between BtAdVs and CAdVs, we conducted mass spectrometric analysis and single-particle cryo-electron microscopy reconstructions of the BtAdV 250-A capsid and also analyzed the in vitro host ranges of both viruses. Our results demonstrate that BtAdV 250-A represents a new mastadenovirus species that, in contrast to CAdV, has a unique capsid morphology that contains more prominent extensions of protein IX and can replicate efficiently in a phylogenetically diverse range of species. These findings, in addition to the recognition that both the genetic diversity of BtAdVs and the number of different bat species from disparate geographic regions infected with BtAdVs appears to be extensive, tentatively suggest that bats may have served as a potential reservoir for the cross-species transfer of adenoviruses to other hosts, as theorized for CAdV. IMPORTANCE: Although many adenoviruses are host specific and likely codiverged with their hosts over millions of years, other adenoviruses appear to have emerged through successful cross-species transmission events on more recent time scales. The wide geographic distribution and genetic diversity of adenoviruses in bats and their close phylogenetic relationship to Canine mastadenovirus A (CAdV A) has raised important questions about how CAdV A, and possibly other mammalian adenoviruses, may have emerged. Although most adenoviruses tend to cause limited disease in their natural hosts, CAdV A is unusual in that it may cause high morbidity and sometimes fatal infections in immunocompetent hosts and is thus an important pathogen of carnivores. Here, we performed a comparative evolutionary and structural study of representative bat and canine adenoviruses to better understand the relationship between these two viral groups.


Asunto(s)
Infecciones por Adenoviridae/transmisión , Infecciones por Adenoviridae/virología , Evolución Biológica , Cápside/metabolismo , Cápside/ultraestructura , Microscopía por Crioelectrón , Mastadenovirus/fisiología , Mastadenovirus/ultraestructura , Animales , Quirópteros , Perros , Orden Génico , Genoma Viral , Especificidad del Huésped , Espectrometría de Masas , Mastadenovirus/clasificación , Sistemas de Lectura Abierta , Filogenia , ARN Viral , Homología de Secuencia , Virión
10.
J Virol ; 90(2): 753-67, 2016 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-26512077

RESUMEN

UNLABELLED: Sylvatic carnivores, such as raccoons, have recently been recognized as important hosts in the evolution of canine parvovirus (CPV), a pandemic pathogen of domestic dogs. Although viruses from raccoons do not efficiently bind the dog transferrin receptor (TfR) or infect dog cells, a single mutation changing an aspartic acid to a glycine at capsid (VP2) position 300 in the prototype raccoon CPV allows dog cell infection. Because VP2 position 300 exhibits extensive amino acid variation among the carnivore parvoviruses, we further investigated its role in determining host range by analyzing its diversity and evolution in nature and by creating a comprehensive set of VP2 position 300 mutants in infectious clones. Notably, some position 300 residues rendered CPV noninfectious for dog, but not cat or fox, cells. Changes of adjacent residues (residues 299 and 301) were also observed often after cell culture passage in different hosts, and some of the mutations mimicked changes seen in viruses recovered from natural infections of alternative hosts, suggesting that compensatory mutations were selected to accommodate the new residue at position 300. Analysis of the TfRs of carnivore hosts used in the experimental evolution studies demonstrated that their glycosylation patterns varied, including a glycan present only on the domestic dog TfR that dictates susceptibility to parvoviruses. Overall, there were significant differences in the abilities of viruses with alternative position 300 residues to bind TfRs and infect different carnivore hosts, demonstrating that the process of infection is highly host dependent and that VP2 position 300 is a key determinant of host range. IMPORTANCE: Although the emergence and pandemic spread of canine parvovirus (CPV) are well documented, the carnivore hosts and evolutionary pathways involved in its emergence remain enigmatic. We recently demonstrated that a region in the capsid structure of CPV, centered around VP2 position 300, varies after transfer to alternative carnivore hosts and may allow infection of previously nonsusceptible hosts in vitro. Here we show that VP2 position 300 is the most variable residue in the parvovirus capsid in nature, suggesting that it is a critical determinant in the cross-species transfer of viruses between different carnivores due to its interactions with the transferrin receptor to mediate infection. To this end, we demonstrated that there are substantial differences in receptor binding and infectivity of various VP2 position 300 mutants for different carnivore species and that single mutations in this region can influence whether a host is susceptible or refractory to virus infection.


Asunto(s)
Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Especificidad del Huésped , Mutación Missense , Parvovirus Canino/fisiología , Animales , Gatos , Línea Celular , Perros , Zorros , Glicosilación , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Polisacáridos/análisis , Receptores de Transferrina/química , Receptores de Transferrina/metabolismo , Pase Seriado
11.
Microbiol Spectr ; 12(3): e0499822, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38334387

RESUMEN

Multiple vaccines have been developed and licensed for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). While these vaccines reduce disease severity, they do not prevent infection. To prevent infection and limit transmission, vaccines must be developed that induce immunity in the respiratory tract. Therefore, we performed proof-of-principle studies with an intranasal nanoparticle vaccine against SARS-CoV-2. The vaccine candidate consisted of the self-assembling 60-subunit I3-01 protein scaffold covalently decorated with the SARS-CoV-2 receptor-binding domain (RBD) using the SpyCatcher-SpyTag system. We verified the intended antigen display features by reconstructing the I3-01 scaffold to 3.4 A using cryogenicelectron microscopy. Using this RBD-grafted SpyCage scaffold (RBD + SpyCage), we performed two intranasal vaccination studies in the "gold-standard" pre-clinical Syrian hamster model. The initial study focused on assessing the immunogenicity of RBD + SpyCage combined with the LTA1 intranasal adjuvant. These studies showed RBD + SpyCage vaccination induced an antibody response that promoted viral clearance but did not prevent infection. Inclusion of the LTA1 adjuvant enhanced the magnitude of the antibody response but did not enhance protection. Thus, in an expanded study, in the absence of an intranasal adjuvant, we evaluated if covalent bonding of RBD to the scaffold was required to induce an antibody response. Covalent grafting of RBD was required for the vaccine to be immunogenic, and animals vaccinated with RBD + SpyCage more rapidly cleared SARS-CoV-2 from both the upper and lower respiratory tract. These findings demonstrate the intranasal SpyCage vaccine platform can induce protection against SARS-CoV-2 and, with additional modifications to improve immunogenicity, is a versatile platform for the development of intranasal vaccines targeting respiratory pathogens.IMPORTANCEDespite the availability of efficacious COVID vaccines that reduce disease severity, SARS-CoV-2 continues to spread. To limit SARS-CoV-2 transmission, the next generation of vaccines must induce immunity in the mucosa of the upper respiratory tract. Therefore, we performed proof-of-principle, intranasal vaccination studies with a recombinant protein nanoparticle scaffold, SpyCage, decorated with the RBD of the S protein (SpyCage + RBD). We show that SpyCage + RBD was immunogenic and enhanced SARS-CoV-2 clearance from the nose and lungs of Syrian hamsters. Moreover, covalent grafting of the RBD to the scaffold was required to induce an immune response when given via the intranasal route. These proof-of-concept findings indicate that with further enhancements to immunogenicity (e.g., adjuvant incorporation and antigen optimization), the SpyCage scaffold has potential as a versatile, intranasal vaccine platform for respiratory pathogens.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Animales , Cricetinae , Humanos , Mesocricetus , Nanovacunas , SARS-CoV-2 , COVID-19/prevención & control , Anticuerpos Antivirales , Anticuerpos Neutralizantes
12.
J Gen Virol ; 94(Pt 8): 1769-1779, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23740480

RESUMEN

The foot-and-mouth disease virus (FMDV) structural protein precursor, P1-2A, is cleaved by the virus-encoded 3C protease (3C(pro)) into the capsid proteins VP0, VP1 and VP3 (and 2A). In some systems, it is difficult to produce large amounts of these processed capsid proteins since 3C(pro) can be toxic for cells. The expression level of 3C(pro) activity has now been reduced relative to the P1-2A, and the effect on the yield of processed capsid proteins and their assembly into empty capsid particles within mammalian cells has been determined. Using a vaccinia-virus-based transient expression system, P1-2A (from serotypes O and A) and 3C(pro) were expressed from monocistronic cDNA cassettes as P1-2A-3C, or from dicistronic cassettes with the 3C(pro) expression dependent on a mutant FMDV internal ribosome entry site (IRES) (designated P1-2A-mIRES-3C). The effects of using a mutant 3C(pro) with reduced catalytic activity or using two different mutant IRES elements (the wt GNRA tetraloop sequence GCGA converted, in the cDNA, to GAGA or GTTA) were analysed. For both serotypes, the P1-2A-mIRES-3C construct containing the inefficient GTTA mutant IRES produced the highest amount of processed capsid proteins. These products self-assembled to form FMDV empty capsid particles, which have a related, but distinct, morphology (as determined by electron microscopy and reconstruction) from that determined previously by X-ray crystallography. The assembled empty capsids bind, in a divalent cation-dependent manner, to the RGD-dependent integrin αvß6, a cellular receptor for FMDV, and are recognized appropriately in serotype-specific antigen ELISAs.


Asunto(s)
Virus de la Fiebre Aftosa/genética , Virus de la Fiebre Aftosa/aislamiento & purificación , Virosomas/genética , Virosomas/aislamiento & purificación , Proteasas Virales 3C , Animales , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Línea Celular , Cricetinae , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Expresión Génica , Vectores Genéticos , Imagenología Tridimensional , Sustancias Macromoleculares/metabolismo , Microscopía Electrónica , Unión Proteica , Multimerización de Proteína , Procesamiento Proteico-Postraduccional , Virus Vaccinia/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
13.
Commun Biol ; 6(1): 955, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37726539

RESUMEN

Canine parvovirus (CPV) is an important pathogen that emerged by cross-species transmission to cause severe disease in dogs. To understand the host immune response to vaccination, sera from dogs immunized with parvovirus are obtained, the polyclonal antibodies are purified and used to solve the high resolution cryo EM structures of the polyclonal Fab-virus complexes. We use a custom software, Icosahedral Subparticle Extraction and Correlated Classification (ISECC) to perform subparticle analysis and reconstruct polyclonal Fab-virus complexes from two different dogs eight and twelve weeks post vaccination. In the resulting polyclonal Fab-virus complexes there are a total of five distinct Fabs identified. In both cases, any of the five antibodies identified would interfere with receptor binding. This polyclonal mapping approach identifies a specific, limited immune response to the live vaccine virus and allows us to investigate the binding of multiple different antibodies or ligands to virus capsids.


Asunto(s)
Parvovirus Canino , Animales , Perros , Formación de Anticuerpos , Microscopía por Crioelectrón , Anticuerpos , Vacunación/veterinaria
14.
bioRxiv ; 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36711712

RESUMEN

Canine parvovirus (CPV) is a small non-enveloped single-stranded DNA virus that causes serious diseases in dogs worldwide. The original strain of the virus (CPV-2) emerged in dogs during the late-1970s due to a host range switch of a virus similar to the feline panleukopenia virus (FPV) that infected another host. The virus that emerged in dogs had altered capsid receptor- and antibody-binding sites, with some changes affecting both functions. Further receptor and antibody binding changes arose when the virus became better adapted to dogs or to other hosts. Here, we use in vitro selection and deep sequencing to reveal how two antibodies with known interactions select for escape mutations in CPV. The antibodies bind two distinct epitopes, and one largely overlaps the host receptor binding site. We also engineered antibody variants with altered binding structures. Viruses were passaged with the wild type or mutated antibodies, and their genomes deep sequenced during the selective process. A small number of mutations were detected only within the capsid protein gene during the first few passages of selection, and most sites remained polymorphic or were slow to go to fixation. Mutations arose both within and outside the antibody binding footprints on the capsids, and all avoided the TfR-binding footprint. Many selected mutations matched those that have arisen in the natural evolution of the virus. The patterns observed reveal the mechanisms by which these variants have been selected in nature and provide a better understanding of the interactions between antibody and receptor selections. IMPORTANCE: Antibodies protect animals against infection by many different viruses and other pathogens, and we are gaining new information about the epitopes that induce antibody responses against viruses and the structures of the bound antibodies. However, less is known about the processes of antibody selection and antigenic escape and the constraints that apply in this system. Here, we use an in vitro model system and deep genome sequencing to reveal the mutations that arise in the virus genome during selection by each of two monoclonal antibodies or their engineered variants. High-resolution structures of each of the Fab: capsid complexes revealed their binding interactions. The engineered forms of the wild-type antibodies or mutant forms allowed us to examine how changes in antibody structure influence the mutational selection patterns seen in the virus. The results shed light on the processes of antibody binding, neutralization escape, and receptor binding, and likely have parallels for many other viruses.

15.
Nat Commun ; 14(1): 6335, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37816742

RESUMEN

Global eradication of poliovirus remains elusive, and it is critical to develop next generation vaccines and antivirals. In support of this goal, we map the epitope of human monoclonal antibody 9H2 which is able to neutralize the three serotypes of poliovirus. Using cryo-EM we solve the near-atomic structures of 9H2 fragments (Fab) bound to capsids of poliovirus serotypes 1, 2, and 3. The Fab-virus complexes show that Fab interacts with the same binding mode for each serotype and at the same angle of interaction relative to the capsid surface. For each of the Fab-virus complexes, we find that the binding site overlaps with the poliovirus receptor (PVR) binding site and maps across and into a depression in the capsid called the canyon. No conformational changes to the capsid are induced by Fab binding for any complex. Competition binding experiments between 9H2 and PVR reveal that 9H2 impedes receptor binding. Thus, 9H2 outcompetes the receptor to neutralize poliovirus. The ability to neutralize all three serotypes, coupled with the critical importance of the conserved receptor binding site make 9H2 an attractive antiviral candidate for future development.


Asunto(s)
Anticuerpos Monoclonales , Poliovirus , Humanos , Serogrupo , Proteínas de la Cápside/metabolismo , Sitios de Unión , Anticuerpos Antivirales
16.
PLoS Biol ; 7(4): e92, 2009 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-19402750

RESUMEN

Mimivirus is the largest known virus whose genome and physical size are comparable to some small bacteria, blurring the boundary between a virus and a cell. Structural studies of Mimivirus have been difficult because of its size and long surface fibers. Here we report the use of enzymatic digestions to remove the surface fibers of Mimivirus in order to expose the surface of the viral capsid. Cryo-electron microscopy (cryoEM) and atomic force microscopy were able to show that the 20 icosahedral faces of Mimivirus capsids have hexagonal arrays of depressions. Each depression is surrounded by six trimeric capsomers that are similar in structure to those in many other large, icosahedral double-stranded DNA viruses. Whereas in most viruses these capsomers are hexagonally close-packed with the same orientation in each face, in Mimivirus there are vacancies at the systematic depressions with neighboring capsomers differing in orientation by 60 degrees . The previously observed starfish-shaped feature is well-resolved and found to be on each virus particle and is associated with a special pentameric vertex. The arms of the starfish fit into the gaps between the five faces surrounding the unique vertex, acting as a seal. Furthermore, the enveloped nucleocapsid is accurately positioned and oriented within the capsid with a concave surface facing the unique vertex. Thus, the starfish-shaped feature and the organization of the nucleocapsid might regulate the delivery of the genome to the host. The structure of Mimivirus, as well as the various fiber components observed in the virus, suggests that the Mimivirus genome includes genes derived from both eukaryotic and prokaryotic organisms. The three-dimensional cryoEM reconstruction reported here is of a virus with a volume that is one order of magnitude larger than any previously reported molecular assembly studied at a resolution of equal to or better than 65 Angstroms.


Asunto(s)
Cápside/ultraestructura , Virus ADN/ultraestructura , Conformación Proteica , Proteínas Estructurales Virales/ultraestructura , Virión/ultraestructura , Ensamble de Virus , Cápside/química , Microscopía por Crioelectrón , Virus ADN/química , Virus ADN/genética , Genoma Viral , Microscopía de Fuerza Atómica , Alineación de Secuencia , Proteínas Estructurales Virales/química , Virión/química , Ensamble de Virus/genética
17.
Curr Opin Virol ; 54: 101230, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35576774

RESUMEN

Asymmetric structural elements are typically not readily visualized in icosahedral viruses that have other obvious symmetrical features and most asymmetry has gone unresolved for decades. Asymmetric features may be incorporated during assembly or maturation or develop during key steps in the infectious cycle of the virus. However, resolving asymmetric features requires abandoning capsid-wide symmetry averaging and relying on special applications during single-particle cryogenic electron microscopy (cryo-EM) analysis. Thanks to the advances in the cryo-EM field, we are learning more about asymmetry of viruses. Here we summarize some of what is currently known about asymmetric structural features using as examples members of the Togaviridae, Flaviviridae, Herpesviridae, Parvoviridae, and Papillomaviridae.


Asunto(s)
Virión , Virus , Cápside/química , Proteínas de la Cápside/química , Microscopía por Crioelectrón , Virión/química , Virus/química , Virus/genética
18.
J Virol ; 84(10): 4969-78, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20200243

RESUMEN

Canine parvovirus (CPV) and its relative feline panleukopenia virus (FPV) bind the transferrin receptor type 1 (TfR) to infect their host cells but show differences in the interactions with the feline and canine TfRs that determine viral host range and tissue tropism. We changed apical and protease-like domain residues by introducing point mutations and adding or removing glycosylation signals, and we then examined the interactions of those mutant TfRs with the capsids. Most substitutions had little effect on virus binding and uptake. However, mutations of several sites in the apical domain of the receptor either prevented binding to the capsids or reduced the affinity of receptor binding to various degrees. Glycans within the virus binding face of the apical domain also controlled capsid binding. CPV, but not the related feline parvovirus, could use receptors containing a canine TfR-specific glycosylation to mediate efficient infection, while addition of other N-linked glycosylation sites into the virus binding face of the feline apical domain reduced or eliminated both binding and infection. Replacement of critical feline TfR residue 221 with every amino acid had effects on binding and infection which were significantly associated with the biochemical properties of the residue replaced. Receptors with reduced affinities mostly showed proportional changes in their ability to mediate infection. Testing feline TfR variants for their binding and uptake patterns in cells showed that low-affinity versions bound fewer capsids and also differed in attachment to the cell surface and filopodia, but transport to the perinuclear endosome was similar.


Asunto(s)
Proteínas de la Cápside/metabolismo , Virus de la Panleucopenia Felina/fisiología , Parvovirus Canino/fisiología , Receptores de Transferrina/metabolismo , Tropismo Viral , Acoplamiento Viral , Sustitución de Aminoácidos/genética , Animales , Sitios de Unión , Células CHO , Cricetinae , Cricetulus , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación Puntual , Unión Proteica , Estructura Terciaria de Proteína , Receptores de Transferrina/genética
19.
J Med Virol ; 83(9): 1571-81, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21739448

RESUMEN

To understand better how different genomic regions may confer pathogenicity for the coxsackievirus B (CVB), two intratypic CVB1 variants, and a number of recombinant viruses were studied. Sequencing analysis showed 23 nucleotide changes between the parental non-pathogenic CVB1N and the pathogenic CVB1Nm. Mutations present in CVB1Nm were more conserved than those in CVB1N when compared to other CVB sequences. Inoculation in C3H/HeJ mice showed that the P1 region is critical for pathogenicity in murine pancreas and heart. The molecular determinants of disease for these organs partially overlap. Several P1 region amino acid differences appear to be located in the decay-accelerating factor (DAF) footprint CVBs. CVB1N and CVB1Nm interacted with human CAR, but only CVB1N seemed to interact with human DAF, as determined using soluble receptors in a plaque-reduction assay. However, the murine homolog Daf-1 did not interact with any virus assessed by hemagglutination. The results of this study suggest that an unknown receptor interaction with the virus play an important role in the pathogenicity of CVB1Nm. Further in vivo studies may clarify this issue.


Asunto(s)
Infecciones por Coxsackievirus/virología , Enterovirus Humano B/genética , Enterovirus Humano B/patogenicidad , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Sitios de Unión , Antígenos CD55/genética , Antígenos CD55/metabolismo , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus , Células HeLa , Humanos , Masculino , Ratones , Ratones Endogámicos C3H , Mutación , Receptores Virales/metabolismo , Análisis de Secuencia de ADN , Ensayo de Placa Viral
20.
Viruses ; 13(10)2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34696452

RESUMEN

Human papillomavirus (HPV) is a significant health burden and leading cause of virus-induced cancers. However, studies have been hampered due to restricted tropism that makes production and purification of high titer virus problematic. This issue has been overcome by developing alternative HPV production methods such as virus-like particles (VLPs), which are devoid of a native viral genome. Structural studies have been limited in resolution due to the heterogeneity, fragility, and stability of the VLP capsids. The mouse papillomavirus (MmuPV1) presented here has provided the opportunity to study a native papillomavirus in the context of a common laboratory animal. Using cryo EM to solve the structure of MmuPV1, we achieved 3.3 Å resolution with a local symmetry refinement method that defined smaller, symmetry related subparticles. The resulting high-resolution structure allowed us to build the MmuPV1 asymmetric unit for the first time and identify putative L2 density. We also used our program ISECC to quantify capsid flexibility, which revealed that capsomers move as rigid bodies connected by flexible linkers. The MmuPV1 flexibility was comparable to that of a HPV VLP previously characterized. The resulting MmuPV1 structure is a promising step forward in the study of papillomavirus and will provide a framework for continuing biochemical, genetic, and biophysical research for papillomaviruses.


Asunto(s)
Cápside/química , Cápside/ultraestructura , Microscopía por Crioelectrón , Papillomaviridae/ultraestructura , Animales , Proteínas de la Cápside , Genoma Viral , Ratones , Modelos Moleculares , Proteínas Oncogénicas Virales , Papillomaviridae/genética , Infecciones por Papillomavirus/virología , Virus no Clasificados/clasificación , Virus no Clasificados/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda