Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(28): e2322203121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38968122

RESUMEN

Targeting cell surface molecules using radioligand and antibody-based therapies has yielded considerable success across cancers. However, it remains unclear how the expression of putative lineage markers, particularly cell surface molecules, varies in the process of lineage plasticity, wherein tumor cells alter their identity and acquire new oncogenic properties. A notable example of lineage plasticity is the transformation of prostate adenocarcinoma (PRAD) to neuroendocrine prostate cancer (NEPC)-a growing resistance mechanism that results in the loss of responsiveness to androgen blockade and portends dismal patient survival. To understand how lineage markers vary across the evolution of lineage plasticity in prostate cancer, we applied single-cell analyses to 21 human prostate tumor biopsies and two genetically engineered mouse models, together with tissue microarray analysis on 131 tumor samples. Not only did we observe a higher degree of phenotypic heterogeneity in castrate-resistant PRAD and NEPC than previously anticipated but also found that the expression of molecules targeted therapeutically, namely PSMA, STEAP1, STEAP2, TROP2, CEACAM5, and DLL3, varied within a subset of gene-regulatory networks (GRNs). We also noted that NEPC and small cell lung cancer subtypes shared a set of GRNs, indicative of conserved biologic pathways that may be exploited therapeutically across tumor types. While this extreme level of transcriptional heterogeneity, particularly in cell surface marker expression, may mitigate the durability of clinical responses to current and future antigen-directed therapies, its delineation may yield signatures for patient selection in clinical trials, potentially across distinct cancer types.


Asunto(s)
Análisis de la Célula Individual , Masculino , Humanos , Análisis de la Célula Individual/métodos , Animales , Ratones , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/tratamiento farmacológico , Antígenos de Superficie/metabolismo , Antígenos de Superficie/genética , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/inmunología , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Adenocarcinoma/genética , Adenocarcinoma/patología , Adenocarcinoma/metabolismo , Adenocarcinoma/tratamiento farmacológico , Carcinoma Neuroendocrino/genética , Carcinoma Neuroendocrino/patología , Carcinoma Neuroendocrino/metabolismo , Carcinoma Neuroendocrino/tratamiento farmacológico , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico
2.
Proc Natl Acad Sci U S A ; 120(10): e2214888120, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36853945

RESUMEN

Necrosis in the tumor interior is a common feature of aggressive cancers that is associated with poor clinical prognosis and the development of metastasis. How the necrotic core promotes metastasis remains unclear. Here, we report that emergence of necrosis inside the tumor is correlated temporally with increased tumor dissemination in a rat breast cancer model and in human breast cancer patients. By performing spatially focused transcriptional profiling, we identified angiopoietin-like 7 (Angptl7) as a tumor-specific factor localized to the perinecrotic zone. Functional studies showed that Angptl7 loss normalizes central necrosis, perinecrotic dilated vessels, metastasis, and reduces circulating tumor cell counts to nearly zero. Mechanistically, Angptl7 promotes vascular permeability and supports vascular remodeling in the perinecrotic zone. Taken together, these findings show that breast tumors actively produce factors controlling central necrosis formation and metastatic dissemination from the tumor core.


Asunto(s)
Neoplasias de la Mama , Neoplasias Mamarias Animales , Células Neoplásicas Circulantes , Animales , Femenino , Humanos , Ratas , Proteína 7 Similar a la Angiopoyetina , Proteínas Similares a la Angiopoyetina , Angiopoyetinas/genética , Neoplasias de la Mama/genética , Necrosis
3.
J Pathol ; 262(1): 105-120, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37850574

RESUMEN

HOXB13 is a key lineage homeobox transcription factor that plays a critical role in the differentiation of the prostate gland. Several studies have suggested that HOXB13 alterations may be involved in prostate cancer development and progression. Despite its potential biological relevance, little is known about the expression of HOXB13 across the disease spectrum of prostate cancer. To this end, we validated a HOXB13 antibody using genetic controls and investigated HOXB13 protein expression in murine and human developing prostates, localized prostate cancers, and metastatic castration-resistant prostate cancers. We observed that HOXB13 expression increases during later stages of murine prostate development. All localized prostate cancers showed HOXB13 protein expression. Interestingly, lower HOXB13 expression levels were observed in higher-grade tumors, although no significant association between HOXB13 expression and recurrence or disease-specific survival was found. In advanced metastatic prostate cancers, HOXB13 expression was retained in the majority of tumors. While we observed lower levels of HOXB13 protein and mRNA levels in tumors with evidence of lineage plasticity, 84% of androgen receptor-negative castration-resistant prostate cancers and neuroendocrine prostate cancers (NEPCs) retained detectable levels of HOXB13. Notably, the reduced expression observed in NEPCs was associated with a gain of HOXB13 gene body CpG methylation. In comparison to the commonly used prostate lineage marker NKX3.1, HOXB13 showed greater sensitivity in detecting advanced metastatic prostate cancers. Additionally, in a cohort of 837 patients, 383 with prostatic and 454 with non-prostatic tumors, we found that HOXB13 immunohistochemistry had a 97% sensitivity and 99% specificity for prostatic origin. Taken together, our studies provide valuable insight into the expression pattern of HOXB13 during prostate development and cancer progression. Furthermore, our findings support the utility of HOXB13 as a diagnostic biomarker for prostate cancer, particularly to confirm the prostatic origin of advanced metastatic castration-resistant tumors. © 2023 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Animales , Humanos , Masculino , Ratones , Genes Homeobox , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Próstata/patología , Neoplasias de la Próstata/patología , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Reino Unido
4.
Am J Pathol ; 193(1): 4-10, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36309102

RESUMEN

Basal cell carcinoma (BCC) of the prostate is a rare tumor. Compared with the more common acinar adenocarcinoma (AAC) of the prostate, BCCs show features of basal cell differentiation and are thought to be biologically distinct from AAC. The spectrum of molecular alterations of BCC has not been comprehensively described, and genomic studies are lacking. Herein, whole genome sequencing was performed on archival formalin-fixed, paraffin-embedded specimens of two cases with BCC. Prostatic BCCs were characterized by an overall low copy number and mutational burden. Recurrent copy number loss of chromosome 16 was observed. In addition, putative driver gene alterations in KIT, DENND3, PTPRU, MGA, and CYLD were identified. Mechanistically, depletion of the CYLD protein resulted in increased proliferation of prostatic basal cells in vitro. Collectively, these studies show that prostatic BCC displays distinct genomic alterations from AAC and highlight a potential role for loss of chromosome 16 in the pathogenesis of this rare tumor type.


Asunto(s)
Carcinoma Basocelular , Neoplasias de la Próstata , Neoplasias Cutáneas , Masculino , Humanos , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Próstata/patología , Carcinoma Basocelular/genética , Carcinoma Basocelular/patología , Neoplasias Cutáneas/patología , Genómica , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores , Factores de Intercambio de Guanina Nucleótido
5.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34341114

RESUMEN

Prostate adenocarcinoma is the second most commonly diagnosed cancer in men worldwide, and the initiating factors are unknown. Oncogenic TMPRSS2:ERG (ERG+) gene fusions are facilitated by DNA breaks and occur in up to 50% of prostate cancers. Infection-driven inflammation is implicated in the formation of ERG+ fusions, and we hypothesized that these fusions initiate in early inflammation-associated prostate cancer precursor lesions, such as proliferative inflammatory atrophy (PIA), prior to cancer development. We investigated whether bacterial prostatitis is associated with ERG+ precancerous lesions in unique cases with active bacterial infections at the time of radical prostatectomy. We identified a high frequency of ERG+ non-neoplastic-appearing glands in these cases, including ERG+ PIA transitioning to early invasive cancer. These lesions were positive for ERG protein by immunohistochemistry and ERG messenger RNA by in situ hybridization. We additionally verified TMPRSS2:ERG genomic rearrangements in precursor lesions using tricolor fluorescence in situ hybridization. Identification of rearrangement patterns combined with whole-prostate mapping in three dimensions confirmed multiple (up to eight) distinct ERG+ precancerous lesions in infected cases. We further identified the pathogen-derived genotoxin colibactin as a potential source of DNA breaks in clinical cases as well as cultured prostate cells. Overall, we provide evidence that bacterial infections can initiate driver gene alterations in prostate cancer. In addition, our observations indicate that infection-induced ERG+ fusions are an early alteration in the carcinogenic process and that PIA may serve as a direct precursor to prostate cancer.


Asunto(s)
Infecciones Bacterianas/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/microbiología , Serina Endopeptidasas/genética , Atrofia , Infecciones Bacterianas/complicaciones , Infecciones Bacterianas/patología , Roturas del ADN , Humanos , Masculino , Fusión de Oncogenes , Péptidos/genética , Policétidos , Próstata/microbiología , Próstata/patología , Prostatectomía , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/cirugía , Prostatitis/genética , Prostatitis/microbiología , Prostatitis/patología , Regulador Transcripcional ERG/genética
6.
Prostate ; 83(7): 641-648, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36779357

RESUMEN

BACKGROUND: Amphicrine prostate carcinoma (AMPC) is a poorly defined subset of prostate cancer in which cells co-express luminal prostate epithelial and neuroendocrine markers. The optimal treatment strategy is unknown. We sought to further characterize the clinical, histomorphologic, and molecular characteristics of AMPC and to identify areas of potential future treatment investigations. METHODS: We retrospectively identified 17 cases of AMPC at a single institution, defined as synaptophysin expression in >70% of cells and co-expression of androgen receptor (AR) signaling markers (either AR, PSA, or NKX3.1) in >50% of cells. Clinical and histologic features of AMPC cases as well as response to treatment and clinical outcomes were described. RESULTS: Five AMPC cases arose de novo in the absence of prior systemic treatment and behaved distinctly from cases that were treatment-emergent. In these de novo cases, despite expression of neuroendocrine markers, prognosis appeared more favorable than high-grade neuroendocrine carcinoma, with two (40%) patients with de novo metastatic disease, universal response to androgen deprivation therapy, and no deaths at a median follow-up of 12.3 months. Treatment-emergent AMPC arose a median of 41.1 months after androgen deprivation therapy initiation and was associated with poor response to therapy. CONCLUSIONS: We show that amphicrine prostate cancer is a unique entity and differs in clinical and molecular features from high-grade neuroendocrine carcinomas of the prostate. Our study highlights the need to recognize AMPC as a unique molecularly defined subgroup of prostate cancer.


Asunto(s)
Carcinoma Neuroendocrino , Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Estudios Retrospectivos , Antagonistas de Andrógenos/uso terapéutico , Antagonistas de Andrógenos/metabolismo , Andrógenos/metabolismo , Próstata/patología , Carcinoma Neuroendocrino/patología , Neoplasias de la Próstata Resistentes a la Castración/patología
7.
J Pathol ; 255(4): 425-437, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34431104

RESUMEN

Neuroendocrine prostate cancer (NEPC) is a rare but aggressive histologic variant of prostate cancer that responds poorly to androgen deprivation therapy. Hybrid NEPC-adenocarcinoma (AdCa) tumors are common, often eluding accurate pathologic diagnosis and requiring ancillary markers for classification. We recently performed an outlier-based meta-analysis across a number of independent gene expression microarray datasets to identify novel markers that differentiate NEPC from AdCa, including up-regulation of insulinoma-associated protein 1 (INSM1) and loss of Yes-associated protein 1 (YAP1). Here, using diverse cancer gene expression datasets, we show that Hippo pathway-related genes, including YAP1, are among the top down-regulated gene sets with expression of the neuroendocrine transcription factors, including INSM1. In prostate cancer cell lines, transgenic mouse models, and human prostate tumor cohorts, we confirm that YAP1 RNA and YAP1 protein expression are silenced in NEPC and demonstrate that the inverse correlation of INSM1 and YAP1 expression helps to distinguish AdCa from NEPC. Mechanistically, we find that YAP1 loss in NEPC may help to maintain INSM1 expression in prostate cancer cell lines and we further demonstrate that YAP1 silencing likely occurs epigenetically, via CpG hypermethylation near its transcriptional start site. Taken together, these data nominate two additional markers to distinguish NEPC from AdCa and add to data from other tumor types suggesting that Hippo signaling is tightly reciprocally regulated with neuroendocrine transcription factor expression. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma Neuroendocrino/patología , Neoplasias de la Próstata Resistentes a la Castración/patología , Proteínas Represoras/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Animales , Biomarcadores de Tumor/análisis , Carcinoma Neuroendocrino/metabolismo , Xenoinjertos , Humanos , Masculino , Ratones , Neoplasias de la Próstata Resistentes a la Castración/metabolismo
8.
J Pathol ; 254(3): 279-288, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33870509

RESUMEN

Epigenetic alterations are increasingly recognized as important contributors to the development and progression of pancreatic ductal adenocarcinoma. 5-hydroxymethylcytosine (5hmC) is an epigenetic DNA mark generated through the ten-eleven translocation (TET) enzyme-mediated pathway and is closely linked to gene activation. However, the timing of alterations in epigenetic regulation in the progression of pancreatic neoplasia is not well understood. In this study, we hypothesized that aberrant expression of ten-eleven translocation methylcytosine dioxygenase 1 (TET1) and subsequent global 5hmC alteration are linked to early tumorigenesis in the pancreas. Therefore, we evaluated alterations of 5hmC and TET1 levels using immunohistochemistry in pancreatic neoplasms (n = 380) and normal ducts (n = 118). The study cohort included representation of the full spectrum of precancerous lesions from low- and high-grade pancreatic intraepithelial neoplasia (n = 95), intraductal papillary mucinous neoplasms (all subtypes, n = 129), intraductal oncocytic papillary neoplasms (n = 12), and mucinous cystic neoplasms (n = 144). 5hmC and TET1 were significantly downregulated in all types of precancerous lesion and associated invasive pancreatic ductal adenocarcinomas compared with normal ductal epithelium (all p < 0.001), and expression of 5hmC positively correlated with expression of TET1. Importantly, downregulation of both 5hmC and TET1 was observed in most low-grade precancerous lesions. There were no clear associations between 5hmC levels and clinicopathological factors, thereby suggesting a common epigenetic abnormality across precancerous lesions. We conclude that downregulation of 5hmC and TET1 is an early event in pancreatic tumorigenesis. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
5-Metilcitosina/análogos & derivados , Carcinogénesis/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Regulación Neoplásica de la Expresión Génica/fisiología , Neoplasias Pancreáticas/metabolismo , 5-Metilcitosina/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Carcinogénesis/patología , Carcinoma Ductal Pancreático/patología , Regulación hacia Abajo , Epigénesis Genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Oxigenasas de Función Mixta/metabolismo , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas/metabolismo
9.
Proc Natl Acad Sci U S A ; 116(41): 20482-20488, 2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31548407

RESUMEN

A new evaluation of previously published data suggested to us that the accumulation of mutations might slow, rather than increase, as individuals age. To explain this unexpected finding, we hypothesized that normal stem cell division rates might decrease as we age. To test this hypothesis, we evaluated cell division rates in the epithelium of human colonic, duodenal, esophageal, and posterior ethmoid sinonasal tissues. In all 4 tissues, there was a significant decrease in cell division rates with age. In contrast, cell division rates did not decrease in the colon of aged mice, and only small decreases were observed in their small intestine or esophagus. These results have important implications for understanding the relationship between normal stem cells, aging, and cancer. Moreover, they provide a plausible explanation for the enigmatic age-dependent deceleration in cancer incidence in very old humans but not in mice.


Asunto(s)
Envejecimiento , División Celular , Desaceleración , Mutación , Neoplasias/epidemiología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Colon/citología , Colon/metabolismo , Duodeno/citología , Duodeno/metabolismo , Esófago/citología , Esófago/metabolismo , Humanos , Incidencia , Antígeno Ki-67/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neoplasias/patología , Senos Paranasales/citología , Senos Paranasales/metabolismo , Adulto Joven
10.
Prostate ; 81(15): 1159-1171, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34402095

RESUMEN

BACKGROUND: Resistance to androgen deprivation therapies is a major driver of mortality in advanced prostate cancer. Therefore, there is a need to develop new preclinical models that allow the investigation of resistance mechanisms and the assessment of drugs for the treatment of castration-resistant prostate cancer. METHODS: We generated two novel cell line models (LAPC4-CR and VCaP-CR) which were derived by passaging LAPC4 and VCaP cells in vivo and in vitro under castrate conditions. We performed detailed transcriptomic (RNA-seq) and proteomic analyses (SWATH-MS) to delineate expression differences between castration-sensitive and castration-resistant cell lines. Furthermore, we characterized the in vivo and in vitro growth characteristics of these novel cell line models. RESULTS: The two cell line derivatives LAPC4-CR and VCaP-CR showed castration-resistant growth in vitro and in vivo which was only minimally inhibited by AR antagonists, enzalutamide, and bicalutamide. High-dose androgen treatment resulted in significant growth arrest of VCaP-CR but not in LAPC4-CR cells. Both cell lines maintained AR expression, but exhibited distinct expression changes on the mRNA and protein level. Integrated analyses including data from LNCaP and the previously described castration-resistant LNCaP-abl cells revealed an expression signature of castration resistance. CONCLUSIONS: The two novel cell line models LAPC4-CR and VCaP-CR and their comprehensive characterization on the RNA and protein level represent important resources to study the molecular mechanisms of castration resistance.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración/patología , Animales , Línea Celular Tumoral , Proliferación Celular , Humanos , Masculino , Fenotipo
11.
Am J Pathol ; 190(7): 1565-1579, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32304697

RESUMEN

Mitochondria regulate ATP production, metabolism, and cell death. Alterations in mitochondrial DNA (mtDNA) sequence and copy number are implicated in aging and organ dysfunction in diverse inherited and sporadic diseases. Because most measurements of mtDNA use homogenates of complex tissues, little is known about cell-type-specific mtDNA copy number heterogeneity in normal physiology, aging, and disease. Thus, the precise cell types whose loss of mitochondrial activity and altered mtDNA copy number that result in organ dysfunction in aging and disease have often not been clarified. Here, an in situ hybridization approach to generate a single-cell-resolution atlas of mtDNA content in mammalian tissues was validated. In hierarchically organized self-renewing tissues, higher levels of mtDNA were observed in stem/proliferative compartments compared with differentiated compartments. Striking zonal patterns of mtDNA levels in the liver reflected the known oxygen tension gradient. In the kidney, proximal and distal tubules had markedly higher mtDNA levels compared with cells within glomeruli and collecting duct epithelial cells. In mice, decreased mtDNA levels were visualized in renal tubules as a function of aging, which was prevented by calorie restriction. This study provides a novel approach for quantifying species- and cell-type-specific mtDNA copy number and dynamics in any normal or diseased tissue that can be used for monitoring the effects of interventions in animal and human studies.


Asunto(s)
Proliferación Celular , ADN Mitocondrial/análisis , Células Madre , Envejecimiento/fisiología , Animales , Atlas como Asunto , Variaciones en el Número de Copia de ADN , Femenino , Humanos , Hibridación in Situ/métodos , Masculino , Ratones , Ratones Endogámicos C57BL
12.
Am J Pathol ; 189(11): 2311-2322, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31499027

RESUMEN

Lactoferrin (LTF) is an iron-binding protein canonically known for its innate and adaptive immune functions. LTF may also act as a tumor suppressor with antiproliferative action. LTF is inactivated genetically or epigenetically in various cancers, and a CpG island spanning the transcriptional start site of LTF is hypermethylated in prostate cancer cell lines. We, therefore, hypothesized that LTF expression is silenced via CpG island hypermethylation in the early stages of prostate tumorigenesis carcinogenesis. Targeted methylation analysis was performed using a combination of methylated-DNA precipitation and methylation-sensitive restriction enzymes, and laser-capture microdissection followed by bisulfite sequencing on DNA isolated from prostate tissue samples, including both primary and metastatic disease. LTF mRNA in situ hybridization and LTF protein immunohistochemistry were also performed. We report that the LTF CpG island is frequently and densely methylated in high-grade prostatic intraepithelial neoplasia, primary prostate carcinoma, and metastases. We further report a decoupling of lactoferrin mRNA and protein expression, including in lesions where LTF mRNA has presumably been silenced via CpG island methylation. We conclude that LTF mRNA expression is silenced in prostate tumorigenesis via hypermethylation, supporting a role for LTF as a prostate cancer tumor suppressor gene. Likewise, the frequency at which the LTF CpG island is methylated across samples suggests it is an important and conserved step in prostate cancer initiation.


Asunto(s)
Adenocarcinoma , Carcinogénesis/genética , Islas de CpG/genética , Metilación de ADN , Lactoferrina/genética , Neoplasias de la Próstata , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Carcinogénesis/metabolismo , Carcinogénesis/patología , Línea Celular Tumoral , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor , Humanos , Lactoferrina/metabolismo , Masculino , Estadificación de Neoplasias , Regiones Promotoras Genéticas , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , ARN Mensajero/metabolismo
13.
Am J Pathol ; 188(6): 1478-1485, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29577933

RESUMEN

Antibodies targeting the programmed cell death protein 1/programmed death-ligand 1 (PD-L1) interaction have shown clinical activity in multiple cancer types. PD-L1 protein expression is a clinically validated predictive biomarker of response for such therapies. Prior studies evaluating the expression of PD-L1 in primary prostate cancers have reported highly variable rates of PD-L1 positivity. In addition, limited data exist on PD-L1 expression in metastatic castrate-resistant prostate cancer (mCRPC). Here, we determined PD-L1 protein expression by immunohistochemistry using a validated PD-L1-specific antibody (SP263) in a large and representative cohort of primary prostate cancers and prostate cancer metastases. The study included 539 primary prostate cancers comprising 508 acinar adenocarcinomas, 24 prostatic duct adenocarcinomas, 7 small-cell carcinomas, and a total of 57 cases of mCRPC. PD-L1 positivity was low in primary acinar adenocarcinoma, with only 7.7% of cases showing detectable PD-L1 staining. Increased levels of PD-L1 expression were noted in 42.9% of small-cell carcinomas. In mCRPC, 31.6% of cases showed PD-L1-specific immunoreactivity. In conclusion, in this comprehensive evaluation of PD-L1 expression in prostate cancer, PD-L1 expression is rare in primary prostate cancers, but increased rates of PD-L1 positivity were observed in mCRPC. These results will be important for the future clinical development of programmed cell death protein 1/PD-L1-targeting therapies in prostate cancer.


Asunto(s)
Adenocarcinoma/metabolismo , Adenocarcinoma/secundario , Antígeno B7-H1/metabolismo , Biomarcadores de Tumor/metabolismo , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Adenocarcinoma/cirugía , Estudios de Cohortes , Humanos , Masculino , Metástasis de la Neoplasia , Valor Predictivo de las Pruebas , Neoplasias de la Próstata/cirugía
14.
J Pathol ; 238(1): 31-41, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26331372

RESUMEN

Prostate cancer often manifests as morphologically distinct tumour foci and is frequently found adjacent to presumed precursor lesions such as high-grade prostatic intraepithelial neoplasia (HGPIN). While there is some evidence to suggest that these lesions can be related and exist on a pathological and morphological continuum, the precise clonal and temporal relationships between precursor lesions and invasive cancers within individual tumours remain undefined. Here, we used molecular genetic, cytogenetic, and histological analyses to delineate clonal, temporal, and spatial relationships between HGPIN and cancer lesions with distinct morphological and molecular features. First, while confirming the previous finding that a substantial fraction of HGPIN lesions associated with ERG-positive cancers share rearrangements and overexpression of ERG, we found that a significant subset of such HGPIN glands exhibit only partial positivity for ERG. This suggests that such ERG-positive HGPIN cells either rapidly invade to form adenocarcinoma or represent cancer cells that have partially invaded the ductal and acinar space in a retrograde manner. To clarify these possibilities, we used ERG expression status and TMPRSS2-ERG genomic breakpoints as markers of clonality, and PTEN deletion status to track temporal evolution of clonally related lesions. We confirmed that morphologically distinct HGPIN and nearby invasive cancer lesions are clonally related. Further, we found that a significant fraction of ERG-positive, PTEN-negative HGPIN and intraductal carcinoma (IDC-P) lesions are most likely clonally derived from adjacent PTEN-negative adenocarcinomas, indicating that such PTEN-negative HGPIN and IDC-P lesions arise from, rather than give rise to, the nearby invasive adenocarcinoma. These data suggest that invasive adenocarcinoma can morphologically mimic HGPIN through retrograde colonization of benign glands with cancer cells. Similar clonal relationships were also seen for intraductal carcinoma adjacent to invasive adenocarcinoma. These findings represent a potentially undervalued indicator of pre-existing invasive prostate cancer and have significant implications for prostate cancer diagnosis and risk stratification.


Asunto(s)
Adenocarcinoma/patología , Carcinoma Intraductal no Infiltrante/patología , Neoplasia Intraepitelial Prostática/patología , Neoplasias de la Próstata/patología , Adenocarcinoma/genética , Carcinoma Intraductal no Infiltrante/genética , Línea Celular Tumoral , Diagnóstico Diferencial , Humanos , Inmunohistoquímica , Hibridación Fluorescente in Situ , Masculino , Invasividad Neoplásica , Proteínas de Fusión Oncogénica/genética , Fosfohidrolasa PTEN/genética , Neoplasia Intraepitelial Prostática/genética , Neoplasias de la Próstata/genética , Transactivadores/genética , Regulador Transcripcional ERG
16.
Mod Pathol ; 28(3): 446-56, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25216229

RESUMEN

We have described a rare group of prostate adenocarcinomas that show aberrant expression of p63, a protein strongly expressed in prostatic basal cells and absent from usual-type acinar prostate cancers. The partial basal-like immunophenotype of these tumors is intriguing in light of the persistent debate surrounding the cell-of-origin for prostate cancer; however, their molecular phenotype is unknown. We collected 37 of these tumors on radical prostatectomy and biopsy and assessed subsets for a diverse panel of molecular markers. The majority of p63-expressing tumors were positive for the ΔNp63 isoform (6/7) by immunofluorescence and p63 mRNA (7/8) by chromogenic in situ hybridization. Despite p63 positivity, these tumors uniformly expressed luminal-type cytokeratin proteins such as CK18 (13/13), CK8 (8/8), and markers of androgen axis signaling commonly seen in luminal cells, including androgen receptor (10/11), NKX3.1 (8/8), and prostein (12/13). Conversely, basal cytokeratins such as CK14 and CK15 were negative in all cases (0/8) and CK5/6 was weakly and focally positive in 36% (4/11) of cases. Pluripotency markers including ß-catenin, Oct4, and c-kit were negative in p63-expressing tumors (0/11). Despite nearly universal expression of androgen receptor and downstream androgen signaling targets, p63-expressing tumors lacked ERG rearrangements by fluorescence in situ hybridization (0/14) and ERG protein expression (0/37). No tumors expressed SPINK1 or showed PTEN protein loss (0/19). Surprisingly, 74% (14/19) of p63-expressing tumors expressed GSTP1 protein at least focally, and 33% (2/6) entirely lacked GSTP1 CpG island hypermethylation by bisulfite sequencing. In contrast to usual prostatic adenocarcinomas, prostate tumors with p63 expression show a mixed luminal/basal immunophenotype, uniformly lack ERG gene rearrangement, and frequently express GSTP1. These data strongly suggest that p63-expressing prostate tumors represent a molecularly distinct subclass and further study of this rare tumor type may yield important insights into the role of p63 in prostatic biology and the prostate cancer cell-of-origin.


Asunto(s)
Adenocarcinoma/metabolismo , Proteínas de la Membrana/biosíntesis , Neoplasias de la Próstata/metabolismo , Adenocarcinoma/patología , Técnica del Anticuerpo Fluorescente , Humanos , Hibridación in Situ , Masculino , Reacción en Cadena de la Polimerasa , Neoplasias de la Próstata/patología , Isoformas de Proteínas/biosíntesis
17.
Curr Opin Urol ; 25(3): 238-45, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25730327

RESUMEN

PUPOSE OF REVIEW: The review covers arguments for and against removing the label of 'cancer' in Gleason score 6 prostate tumors. RECENT FINDINGS: While there are a number of factors that determine whether men elect active surveillance, the most powerful predictor remains the Gleason score. Gleason grading remains a robust and powerful predictor of outcome in patients with prostate cancer. A pure Gleason score 6 (GS6) tumor is exceedingly unlikely to cause harm in the near term, and there have been discussions regarding whether the term cancer should still be applied. In this review, we update the largely clinico-pathological arguments that have led to the suggestion to remove the cancer label from GS6 tumors, and we provide counter arguments on the basis of practical matters of needle biopsy sampling, classical histopathology, and molecular biology findings. SUMMARY: The implications are that by retaining the label of cancer and implementing the recently proposed concept of prognostic groups, with patients harboring GS6 tumors placed into the lowest category, there is still a strong rationale in support of the choice of active surveillance or watchful waiting for most patients with GS6 lesions.


Asunto(s)
Clasificación del Tumor , Próstata/patología , Neoplasias de la Próstata/patología , Espera Vigilante , Técnicas de Apoyo para la Decisión , Humanos , Masculino , Estadificación de Neoplasias , Selección de Paciente , Valor Predictivo de las Pruebas , Pronóstico , Antígeno Prostático Específico/sangre , Neoplasias de la Próstata/diagnóstico
18.
J Pathol ; 230(2): 174-83, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23447416

RESUMEN

TMPRSS2-ERG rearrangements occur in approximately 50% of prostate cancers and therefore represent one of the most frequently observed structural rearrangements in all cancers. However, little is known about the genomic architecture of such rearrangements. We therefore designed and optimized a pipeline involving target capture of TMPRSS2 and ERG genomic sequences coupled with paired-end next-generation sequencing to resolve genomic rearrangement breakpoints in TMPRSS2 and ERG at nucleotide resolution in a large series of primary prostate cancer specimens (n = 83). This strategy showed > 90% sensitivity and specificity in identifying TMPRSS2-ERG rearrangements, and allowed identification of intra- and inter-chromosomal rearrangements involving TMPRSS2 and ERG with known and novel fusion partners. Our results indicate that rearrangement breakpoints show strong clustering in specific intronic regions of TMPRSS2 and ERG. The observed TMPRSS2-ERG rearrangements often exhibited complex chromosomal architecture associated with several intra- and inter-chromosomal rearrangements. Nucleotide resolution analysis of breakpoint junctions revealed that the majority of TMPRSS2 and ERG rearrangements (~88%) occurred at or near regions of microhomology or involved insertions of one or more base pairs. This architecture implicates non-homologous end joining (NHEJ) and microhomology-mediated end joining (MMEJ) pathways in the generation of such rearrangements. These analyses have provided important insights into the molecular mechanisms involved in generating prostate cancer-specific recurrent rearrangements.


Asunto(s)
Adenocarcinoma/genética , Reordenamiento Génico , Neoplasias de la Próstata/genética , Serina Endopeptidasas/genética , Transactivadores/genética , Adenocarcinoma/patología , Regulación Neoplásica de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Nucleótidos/genética , Prostatectomía , Neoplasias de la Próstata/patología , Sensibilidad y Especificidad , Análisis de Secuencia de ADN , Regulador Transcripcional ERG
19.
Clin Lab Med ; 44(2): 161-180, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38821639

RESUMEN

Molecular profiling studies have shed new light on the complex biology of prostate cancer. Genomic studies have highlighted that structural rearrangements are among the most common recurrent alterations. In addition, both germline and somatic mutations in DNA repair genes are enriched in patients with advanced disease. Primary prostate cancer has long been known to be multifocal, but recent studies demonstrate that a large fraction of prostate cancer shows evidence of multiclonality, suggesting that genetically distinct, independently arising tumor clones coexist. Metastatic prostate cancer shows a high level of morphologic and molecular diversity, which is associated with resistance to systemic therapies. The resulting high level of intratumoral heterogeneity has important implications for diagnosis and poses major challenges for the implementation of molecular studies. Here we provide a concise review of the molecular pathology of prostate cancer, highlight clinically relevant alterations, and discuss opportunities for molecular testing.


Asunto(s)
Neoplasias de la Próstata , Humanos , Masculino , Mutación , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/diagnóstico , Próstata/patología
20.
Int J Surg Pathol ; : 10668969241246492, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689480

RESUMEN

Introduction. Papillary urothelial carcinomas are currently graded as either low- or high-grade tumors based on World Health Organization (WHO) 2022 guidelines for genitourinary tumors. However, a minority of tumors are mixed-grade tumors, composed predominantly of low-grade cancer with a minor high-grade component. In the 2022 WHO these cancers are recognized as having outcomes comparable to low-grade cancers, although data to date has been limited. Methods. The pathology records of a large academic institution were searched for mixed-grade, non-muscle invasive papillary carcinomas of the bladder and ureter in order to characterize prognosis of these cancers. Results. Of 136 cancers, the majority (n = 104, 76.5%) were solitary, mixed-grade tumors, while 21 (15.4%) had a concurrent low-grade cancer and 11 (8.1%) had multiple mixed-grade tumors at the time of diagnosis. At follow-up (median 48.3 months, range = 1.3 months-18.1 years), 71 cancers recurred (52.2%): 52 (38.2%) as low- or mixed-grade cancers and 18 (13.2%) as high-grade cancers. There were no instances of stage-progression to >pT2. Conclusions. The clinical outcome of mixed-grade carcinomas was similar to what has been reported for low-grade carcinomas. Based on our results, and prior congruent studies of mixed-grade lesions, these lesions may be regarded as a distinct sub-category with a better prognosis than high-grade tumors.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda