Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Nature ; 594(7863): 403-407, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34040259

RESUMEN

Adaptive behaviour necessitates the formation of memories for fearful events, but also that these memories can be extinguished. Effective extinction prevents excessive and persistent reactions to perceived threat, as can occur in anxiety and 'trauma- and stressor-related' disorders1. However, although there is evidence that fear learning and extinction are mediated by distinct neural circuits, the nature of the interaction between these circuits remains poorly understood2-6. Here, through a combination of in vivo calcium imaging, functional manipulations, and slice physiology, we show that distinct inhibitory clusters of intercalated neurons (ITCs) in the mouse amygdala exert diametrically opposed roles during the acquisition and retrieval of fear extinction memory. Furthermore, we find that the ITC clusters antagonize one another through mutual synaptic inhibition and differentially access functionally distinct cortical- and midbrain-projecting amygdala output pathways. Our findings show that the balance of activity between ITC clusters represents a unique regulatory motif that orchestrates a distributed neural circuitry, which in turn regulates the switch between high- and low-fear states. These findings suggest that the ITCs have a broader role in a range of amygdala functions and associated brain states that underpins the capacity to adapt to salient environmental demands.


Asunto(s)
Amígdala del Cerebelo/citología , Amígdala del Cerebelo/fisiología , Miedo/fisiología , Estimulación Acústica , Animales , Reacción de Prevención , Condicionamiento Clásico , Extinción Psicológica , Femenino , Masculino , Ratones , Inhibición Neural , Neuronas/fisiología
2.
Cereb Cortex ; 31(2): 1307-1315, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33063102

RESUMEN

Integration of information processed separately in distributed brain regions is essential for brain functions. This integration is enabled by long-range projection neurons, and further, concerted interactions between long-range projections and local microcircuits are crucial. It is not well known, however, how this interaction is implemented in cortical circuits. Here, to decipher this logic, using callosal projection neurons (CPNs) in layer 2/3 of the mouse visual cortex as a model of long-range projections, we found that CPNs exhibited distinct response properties and fine-scale local connectivity patterns. In vivo 2-photon calcium imaging revealed that CPNs showed a higher ipsilateral (to their somata) eye preference, and that CPN pairs showed stronger signal/noise correlation than random pairs. Slice recordings showed CPNs were preferentially connected to CPNs, demonstrating the existence of projection target-dependent fine-scale subnetworks. Collectively, our results suggest that long-range projection target predicts response properties and local connectivity of cortical projection neurons.


Asunto(s)
Red Nerviosa/fisiología , Neuronas/fisiología , Estimulación Luminosa/métodos , Corteza Visual/fisiología , Vías Visuales/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Red Nerviosa/química , Neuronas/química , Técnicas de Cultivo de Órganos , Corteza Visual/química , Vías Visuales/química
3.
Neurosci Res ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39033998

RESUMEN

Processing emotionally meaningful stimuli and eliciting appropriate valence-specific behavior in response is a critical brain function for survival. Thus, how positive and negative valence are represented in neural circuits and how corresponding neural substrates interact to cooperatively select appropriate behavioral output are fundamental questions. In previous work, we identified that two amygdala intercalated clusters show opposite response selectivity to fear- and anxiety-inducing stimuli - negative valence (Hagihara et al., 2021). Here, we further show that the two clusters also exhibit distinctly different representations of stimuli with positive valence, demonstrating a broader role of the amygdala intercalated system beyond fear and anxiety. Together with the mutually inhibitory connectivity between the two clusters, our findings suggest that they serve as an ideal neural substrate for the integrated processing of valence for the selection of behavioral output.

4.
Sci Adv ; 9(3): eabq1637, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36652513

RESUMEN

Memory encoding and retrieval rely on specific interactions across multiple brain areas. Although connections between individual brain areas have been extensively studied, the anatomical and functional specificity of neuronal circuit organization underlying information transfer across multiple brain areas remains unclear. Here, we combine transsynaptic viral tracing, optogenetic manipulations, and calcium dynamics recordings to dissect the multisynaptic functional connectivity of the amygdala. We identify a distinct basolateral amygdala (BLA) subpopulation that connects disynaptically to the periaqueductal gray (PAG) via the central amygdala (CeA). This disynaptic pathway serves as a core circuit element necessary for the learning and expression of conditioned fear and exhibits learning-related plasticity. Together, our findings demonstrate the utility of multisynaptic approaches for functional circuit analysis and indicate that disynaptic specificity may be a general feature of neuronal circuit organization.

5.
Elife ; 112022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-36001081

RESUMEN

The developing neocortex exhibits spontaneous network activity with various synchrony levels, which has been implicated in the formation of cortical circuits. We previously reported that the development of callosal axon projections, one of the major long-range axonal projections in the brain, is activity dependent. However, what sort of activity and when activity is indispensable are not known. Here, using a genetic method to manipulate network activity in a stage-specific manner, we demonstrated that network activity contributes to callosal axon projections in the mouse visual cortex during a 'critical period': restoring neuronal activity during that period resumed the projections, whereas restoration after the period failed. Furthermore, in vivo Ca2+ imaging revealed that the projections could be established even without fully restoring highly synchronous activity. Overall, our findings suggest that spontaneous network activity is selectively required during a critical developmental time window for the formation of long-range axonal projections in the cortex.


Asunto(s)
Cuerpo Calloso , Corteza Visual , Animales , Axones/fisiología , Cuerpo Calloso/fisiología , Ratones , Neuronas/fisiología , Corteza Visual/fisiología
6.
Cell Rep ; 26(5): 1082-1088.e3, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30699339

RESUMEN

Finding the relationship between individual cognitive functions and cell-type-specific neuronal circuits is a central topic in neuroscience. In cats, the lateral geniculate nucleus (LGN) contains several cell types carrying spatially and temporally precise visual information. Whereas LGN cell types lack selectivity for motion direction, neurons in the primary visual cortex (area 17) exhibit sharp direction selectivity. Whether and how such de novo formation of direction selectivity depends on LGN cell types remains unknown. Here, we addressed this question using in vivo two-photon calcium imaging in cat area 17, which consists of two compartments receiving different combinations of inputs from the LGN cell types. The direction map in area 17 showed unique fragmented organization and was present only in small and distributed cortical domains. Moreover, direction-selective domains preferentially localized in specific compartments receiving Y and W inputs carrying low spatial frequency visual information, indicating that cell-type-specific thalamocortical projections constrain the formation of direction selectivity.


Asunto(s)
Mapeo Encefálico , Tálamo/fisiología , Corteza Visual/fisiología , Animales , Calcio/metabolismo , Gatos , Femenino , Masculino , Especificidad de Órganos , Fotones
7.
Nat Neurosci ; 18(12): 1780-8, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26523644

RESUMEN

Neuronal activity is important for the functional refinement of neuronal circuits in the early visual system. At the level of the cerebral cortex, however, it is still unknown whether the formation of fundamental functions such as orientation selectivity depends on neuronal activity, as it has been difficult to suppress activity throughout development. Using genetic silencing of cortical activity starting before the formation of orientation selectivity, we found that the orientation selectivity of neurons in the mouse visual cortex formed and matured normally despite a strong suppression of both spontaneous and visually evoked activity throughout development. After the orientation selectivity formed, the distribution of the preferred orientations of neurons was reorganized. We found that this process required spontaneous activity, but not visually evoked activity. Thus, the initial formation and maturation of orientation selectivity is largely independent of neuronal activity, and the initial selectivity is subsequently modified depending on neuronal activity.


Asunto(s)
Neuronas/fisiología , Orientación/fisiología , Corteza Visual/crecimiento & desarrollo , Vías Visuales/crecimiento & desarrollo , Percepción Visual/fisiología , Animales , Animales Recién Nacidos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Estimulación Luminosa/métodos , Embarazo , Corteza Visual/citología , Vías Visuales/citología
8.
Artículo en Inglés | MEDLINE | ID: mdl-23533083

RESUMEN

Inhibitory interneurons play important roles in the development of brain functions. In the visual cortex, functional maturation of inhibitory interneurons is essential for ocular dominance plasticity. However, roles of inhibitory interneurons in the development of orientation and direction selectivity, fundamental properties of primary visual cortex, are less understood. We examined orientation and direction selectivity of neurons in GAD67-GFP (Δneo) mice, in which expression of GABA in the brain is decreased in the newborn. We used in vivo two-photon calcium imaging to examine visual response of neurons in these mice and found that long-term decrease of GABA led to increase of response amplitude to non-preferred orientation of visual stimuli, which decreased orientation selectivity. In contrast, direction selectivity was not affected. These results suggest that orientation selectivity is decreased in mice with GABA down-regulation during development.


Asunto(s)
Regulación hacia Abajo/genética , Glutamato Descarboxilasa/deficiencia , Glutamato Descarboxilasa/metabolismo , Orientación/fisiología , Estimulación Luminosa/métodos , Corteza Visual/metabolismo , Ácido gamma-Aminobutírico/deficiencia , Ácido gamma-Aminobutírico/metabolismo , Animales , Animales Recién Nacidos , Técnicas de Sustitución del Gen/métodos , Glutamato Descarboxilasa/genética , Ratones , Ratones Endogámicos C57BL , Factores de Tiempo , Ácido gamma-Aminobutírico/biosíntesis
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda