Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
1.
J Cell Mol Med ; 28(8): e18276, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38546629

RESUMEN

Histidine triad nucleotide-binding protein 2 (HINT2) is an enzyme found in mitochondria that functions as a nucleotide hydrolase and transferase. Prior studies have demonstrated that HINT2 plays a crucial role in ischemic heart disease, but its importance in cardiac remodelling remains unknown. Therefore, the current study intends to determine the role of HINT2 in cardiac remodelling. HINT2 expression levels were found to be lower in failing hearts and hypertrophy cardiomyocytes. The mice that overexpressed HINT2 exhibited reduced myocyte hypertrophy and cardiac dysfunction in response to stress. In contrast, the deficiency of HINT2 in the heart of mice resulted in a worsening hypertrophic phenotype. Further analysis indicated that upregulated genes were predominantly associated with the oxidative phosphorylation and mitochondrial complex I pathways in HINT2-overexpressed mice after aortic banding (AB) treatment. This suggests that HINT2 increases the expression of NADH dehydrogenase (ubiquinone) flavoprotein (NDUF) genes. In cellular studies, rotenone was used to disrupt mitochondrial complex I, and the protective effect of HINT2 overexpression was nullified. Lastly, we predicted that thyroid hormone receptor beta might regulate HINT2 transcriptional activity. To conclusion, the current study showcased that HINT2 alleviates pressure overload-induced cardiac remodelling by influencing the activity and assembly of mitochondrial complex I. Thus, targeting HINT2 could be a novel therapeutic strategy for reducing cardiac remodelling.


Asunto(s)
Corazón , Remodelación Ventricular , Animales , Ratones , Remodelación Ventricular/genética , Mitocondrias , Hipertrofia , Complejo I de Transporte de Electrón/genética , Nucleótidos , Hidrolasas , Proteínas Mitocondriales/genética
2.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38338791

RESUMEN

Phosphatidylinositol 4-phosphate 5-kinases (PIP5Ks), essential enzymes in the phosphatidylinositol signaling pathway, are crucial for the abiotic stress responses and the overall growth and development of plants. However, the GhPIP5Ks had not been systematically studied, and their function in upland cotton was unknown. This study identified a total of 28 GhPIP5Ks, and determined their chromosomal locations, gene structures, protein motifs and cis-acting elements via bioinformatics analysis. A quantitative real-time PCR (qRT‒PCR) analysis showed that most GhPIP5Ks were upregulated under different stresses. A virus-induced gene silencing (VIGS) assay indicated that the superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities were significantly decreased, while malondialdehyde (MDA) content were significantly increased in GhPIP5K2- and GhPIP5K22-silenced upland cotton plants under abiotic stress. Furthermore, the expression of the stress marker genes GhHSFB2A, GhHSFB2B, GhDREB2A, GhDREB2C, GhRD20-1, GhRD29A, GhBIN2, GhCBL3, GhNHX1, GhPP2C, GhCBF1, GhSnRK2.6 and GhCIPK6 was significantly decreased in the silenced plants after exposure to stress. These results revealed that the silencing of GhPIP5K2 and GhPIP5K22 weakened the tolerance to abiotic stresses. These discoveries provide a foundation for further inquiry into the actions of the GhPIP5K gene family in regulating the response and resistance mechanisms of cotton to abiotic stresses.


Asunto(s)
Gossypium , Estrés Fisiológico , Gossypium/metabolismo , Estrés Fisiológico/genética , Secuencias Reguladoras de Ácidos Nucleicos , Transducción de Señal , Biología Computacional , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia
3.
Int J Mol Sci ; 25(3)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38339155

RESUMEN

Annexins (ANNs) are a structurally conserved protein family present in almost all plants. In the present study, 27 GhANNs were identified in cotton and were unevenly distributed across 14 chromosomes. Transcriptome data and RT-qPCR results revealed that multiple GhANNs respond to at least two abiotic stresses. Similarly, the expression levels of GhANN4 and GhANN11 were significantly upregulated under heat, cold, and drought stress. Using virus-induced gene silencing (VIGS), functional characterization of GhANN4 and GhANN11 revealed that, compared with those of the controls, the leaf wilting of GhANN4-silenced plants was more obvious, and the activities of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) were lower under NaCl and PEG stress. Moreover, the expression of stress marker genes (GhCBL3, GhDREB2A, GhDREB2C, GhPP2C, GhRD20-2, GhCIPK6, GhNHX1, GhRD20-1, GhSOS1, GhSOS2 and GhSnRK2.6) was significantly downregulated in GhANN4-silenced plants after stress. Under cold stress, the growth of the GHANN11-silenced plants was significantly weaker than that of the control plants, and the activities of POD, SOD, and CAT were also lower. However, compared with those of the control, the elasticity and orthostatic activity of the GhANN11-silenced plants were greater; the POD, SOD, and CAT activities were higher; and the GhDREB2C, GhHSP, and GhSOS2 expression levels were greater under heat stress. These results suggest that different GhANN family members respond differently to different types of abiotic stress.


Asunto(s)
Genoma de Planta , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma , Estrés Fisiológico/genética , Superóxido Dismutasa/metabolismo , Gossypium/genética , Gossypium/metabolismo , Regulación de la Expresión Génica de las Plantas , Filogenia
4.
Opt Express ; 31(20): 33320-33332, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37859115

RESUMEN

Transmission of sub-terahertz (sub-THz) signals over a fiber-free-space optical (FSO)-fifth-generation (5 G) new radio (NR) hybrid system is successfully realized. It is a promising system that utilizes multiple media of optical fiber, optical wireless, and 5 G NR wireless to achieve a 227.912-Gb/s record-high aggregate net bit rate. The system concurrently transmits a 59.813-Gb/s net bit rate in the 150-GHz sub-THz frequency, 74.766-Gb/s in the 250-GHz sub-THz frequency, and 93.333-Gb/s in the 325-GHz sub-THz frequency through the fiber-FSO-wireless convergence, including 25-km single-mode fiber, 100-m FSO, and 30-m/25-m/20-m sub-THz-wave transmissions. This system achieves sufficiently low bit error rates (< hard-decision forward error correction (FEC) threshold of 3.8 × 10-3 at 16 and 20 Gbaud symbol rates; < soft-decision FEC threshold of 2 × 10-2 at 28 Gbaud symbol rate) and clear and distinct constellation diagrams, meeting the demands of 5 G NR communications in the sub-THz band. The development of fiber-FSO-5 G NR hybrid system represents a substantial development in the field of advanced communications. It has the ability to enhance the way we communicate in the future.

5.
Opt Express ; 31(16): 25477-25489, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37710433

RESUMEN

Broader spectra, lower reflectivity and higher reliability are the performance requirements for broadband antireflective (BBAR) films. In this work, a BBAR film structure was proposed, which maintains extremely low reflectivity, ultra-wide spectra, low polarization sensitivity and practical reliability. The BBAR film consists of a dense multilayer interference stack on the bottom and a nano-grass-like alumina (NGLA) layer with a gradient low refractive index distribution on the top. The film was deposited by atomic layer deposition, while the NGLA layer was formed by means of a hot water bath on Al2O3 layer. The top NGLA layer has extremely high porosity and ultra-low refractive index, along with extremely fragile structure. To surmount the fragility of NGLA layer, a sub-nano layer of SiO2 was grown by atomic layer deposition to solidify its structure and also to adjust the refractive index with different thicknesses of SiO2. Finally, in the wide wavelength range of 400-1100 nm, the average transmittance of the double-sided coated fused quartz reaches 99.2%. The absorption, light scattering, reliability and polarization characteristics of BBAR films were investigated. An optimized BBAR film with low polarization-sensitivity and improved reliability was realized, which should be potentially promising for application in optical systems.

6.
Cell Commun Signal ; 20(1): 50, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35410418

RESUMEN

Myocardial infarction (MI) is one of the most common cardiac emergencies with high morbidity and is a leading cause of death worldwide. Since MI could develop into a life-threatening emergency and could also seriously affect the life quality of patients, continuous efforts have been made to create an effective strategy to prevent the occurrence of MI and reduce MI-related mortality. Numerous studies have confirmed that neutrophils play important roles in inflammation and innate immunity, which provide the first line of defense against microorganisms by producing inflammatory cytokines and chemokines, releasing reactive oxygen species, and degranulating components of neutrophil cytoplasmic granules to kill pathogens. Recently, researchers reported that neutrophils are closely related to the severity and prognosis of patients with MI, and neutrophil to lymphocyte ratio in post-MI patients had predictive value for major adverse cardiac events. Neutrophils have been increasingly recognized to exert important functions in MI. Especially, granule proteins released by neutrophil degranulation after neutrophil activation have been suggested to involve in the process of MI. This article reviewed the current research progress of neutrophil granules in MI and discusses neutrophil degranulation associated diagnosis and treatment strategies. Video abstract Neutrophils played a crucial role throughout the process of MI, and neutrophil degranulation was the crucial step for the regulative function of neutrophils. Both neutrophils infiltrating and neutrophil degranulation take part in the injury and repair process immediately after the onset of MI. Since different granule subsets (e g. MPO, NE, NGAL, MMP-8, MMP-9, cathelicidin, arginase and azurocidin) released from neutrophil degranulation show different effects through diverse mechanisms in MI. In this review, we reviewed the current research progress of neutrophil granules in MI and discusses neutrophil degranulation associated diagnosis and treatment strategies. Myeloperoxidase (MPO); Neutrophil elastase (NE); Neutrophil gelatinase-associated lipocalin (NGAL); Matrix metalloproteinase 8 (MMP-8); Matrix metalloproteinase 9 (MMP-9).


Asunto(s)
Metaloproteinasa 9 de la Matriz , Infarto del Miocardio , Humanos , Lipocalina 2/metabolismo , Metaloproteinasa 8 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Infarto del Miocardio/etiología , Activación Neutrófila
7.
Cell Commun Signal ; 20(1): 43, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35361231

RESUMEN

As an important mechanism to maintain cellular homeostasis, autophagy exerts critical functions via degrading misfolded proteins and damaged organelles. Recent years, alternative autophagy, a new type of autophagy has been revealed, which shares similar morphology with canonical autophagy but is independent of Atg5/Atg7. Investigations on different diseases showed the pivotal role of alternative autophagy during their physio-pathological processes, including heart diseases, neurodegenerative diseases, oncogenesis, inflammatory bowel disease (IBD), and bacterial infection. However, the studies are limited and the precise roles and mechanisms of alternative autophagy are far from clear. It is necessary to review current research on alternative autophagy and get some hint in order to provide new insight for further study. Video Abstract.


Asunto(s)
Autofagia , Enfermedades Neurodegenerativas , Homeostasis , Humanos , Proteínas
8.
Neurobiol Dis ; 152: 105290, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33556540

RESUMEN

In response to various types of environmental and cellular stress, microglia rapidly activate and exhibit either pro- or anti-inflammatory phenotypes to maintain tissue homeostasis. Activation of microglia can result in changes in morphology, phagocytosis capacity, and secretion of cytokines. Furthermore, microglial activation also induces changes to cellular energy demand, which is dependent on the metabolism of various metabolic substrates including glucose, fatty acids, and amino acids. Accumulating evidence demonstrates metabolic reprogramming acts as a key driver of microglial immune response. For instance, microglia in pro-inflammatory states preferentially use glycolysis for energy production, whereas, cells in anti-inflammatory states are mainly powered by oxidative phosphorylation and fatty acid oxidation. In this review, we summarize recent findings regarding microglial metabolic pathways under physiological and pathological circumtances. We will then discuss how metabolic reprogramming can orchestrate microglial response to a variety of central nervous system pathologies. Finally, we highlight how manipulating metabolic pathways can reprogram microglia towards beneficial functions, and illustrate the therapeutic potential for inflammation-related neurological diseases.


Asunto(s)
Adaptación Fisiológica/fisiología , Reprogramación Celular/fisiología , Sistema Nervioso Central/metabolismo , Microglía/metabolismo , Animales , Sistema Nervioso Central/inmunología , Humanos , Metaboloma , Microglía/inmunología , Fenotipo
9.
J Neuroinflammation ; 18(1): 201, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34526069

RESUMEN

BACKGROUND AND PURPOSE: Neuromyelitis optica spectrum disorder (NMOSD) is mainly an anti-aquaporin 4 (anti-AQP4) autoantibodies-mediated idiopathic inflammatory demyelinating disease of the central nervous system. Systemic and local inflammatory responses play a key role in the pathophysiology of NMOSD. However, the role of the crucial immunomodulators CD4+CD25+ forkhead box P3+ (Foxp3) regulatory T cells (Tregs) has not been investigated in NMOSD. METHODS: Twenty-five patients with anti-AQP4-postive NMOSD undergoing an attack and 21 healthy controls (HCs) were enrolled. Frequencies of T cell subsets and Tregs in the peripheral blood were assessed by flow cytometry. Additionally, a model of NMOSD using purified immunoglobulin G from anti-AQP4-antibodies-positive patients with NMOSD and human complement injected into brain of female adult C57BL/6J mice was established. Infiltrated Tregs into NMOSD mouse brain lesions were analyzed by flow cytometry, histological sections, and real-time quantitative Polymerase Chain Reaction. Astrocyte loss, demyelination, and inflammatory response were also evaluated in our NMOSD mouse model. Finally, we examined the effects of both depletion and adoptive transfer of Tregs. RESULTS: The percentage of Tregs, especially naïve Tregs, among total T cells in peripheral blood was significantly decreased in NMOSD patients at acute stage when compared to HCs. Within our animal model, the number and proportion of Tregs among CD4+ T cells were increased in the lesion of mice with NMOSD. Depletion of Tregs profoundly enhanced astrocyte loss and demyelination in these mice, while adoptive transfer of Tregs attenuated brain damage. Mechanistically, the absence of Tregs induced more macrophage infiltration, microglial activation, and T cells invasion, and modulated macrophages/microglia toward a classical activation phenotype, releasing more chemokines and pro-inflammatory cytokines. In contrast, Tregs transfer ameliorated immune cell infiltration in NMOSD mice, including macrophages, neutrophils, and T cells, and skewed macrophages and microglia towards an alternative activation phenotype, thereby decreasing the level of chemokines and pro-inflammatory cytokines. CONCLUSION: Tregs may be key immunomodulators ameliorating brain damage via dampening inflammatory response after NMOSD.


Asunto(s)
Neuromielitis Óptica , Animales , Acuaporina 4 , Autoanticuerpos , Encéfalo/patología , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Linfocitos T Reguladores/patología
10.
Plant Biotechnol J ; 19(5): 1022-1037, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33319456

RESUMEN

Retention of flesh texture attributes during cold storage is critical for the long-term maintenance of fruit quality. The genetic variations determining flesh firmness and crispness retainability are not well understood. The objectives of this study are to identify gene markers based on quantitative trait loci (QTLs) and to develop genomics-assisted prediction (GAP) models for apple flesh firmness and crispness retainability. Phenotype data of 2664 hybrids derived from three Malus domestica cultivars and a M. asiatica cultivar were collected in 2016 and 2017. The phenotype segregated considerably with high broad-sense heritability of 83.85% and 83.64% for flesh firmness and crispness retainability, respectively. Fifty-six candidate genes were predicted from the 62 QTLs identified using bulked segregant analysis and RNA-seq. The genotype effects of the markers designed on each candidate gene were estimated. The genomics-predicted values were obtained using pyramiding marker genotype effects and overall mean phenotype values. Fivefold cross-validation revealed that the prediction accuracy was 0.5541 and 0.6018 for retainability of flesh firmness and crispness, respectively. An 8-bp deletion in the MdERF3 promoter disrupted MdDOF5.3 binding, reduced MdERF3 expression, relieved the inhibition on MdPGLR3, MdPME2, and MdACO4 expression, and ultimately decreased flesh firmness and crispness retainability. A 3-bp deletion in the MdERF118 promoter decreased its expression by disrupting the binding of MdRAVL1, which increased MdPGLR3 and MdACO4 expression and reduced flesh firmness and crispness retainability. These results provide insights regarding the genetic variation network regulating flesh firmness and crispness retainability, and the GAP models can assist in apple breeding.


Asunto(s)
Malus , Frutas , Genómica , Malus/genética , Fitomejoramiento , Sitios de Carácter Cuantitativo/genética
11.
Opt Express ; 29(9): 13815-13828, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33985110

RESUMEN

A reaction chamber of atomic layer deposition (ALD) was developed for simultaneous coating on the inner and outer surfaces of a large-size and strongly curved glass bowl. The inner surface ALD process was in a showerhead reaction mode and the outer surface ALD process was in a cross-flow reaction mode. Blue reflection (BR) film of 400 nm wavelength and broadband antireflection (BBAR) film of 400-700 nm wavelength were coated on different glass bowls by ALD. The spectral uniformity of both coated bowls was studied. The measured spectra at multiple positions of the glass bowl with the BBAR coating show better spectral uniformity along the circumference than the depth. The spectral deviation is mainly caused by the non-uniformity of the film on the outer surface (<±3%), and the film on the inner surface has good uniformity along both the circumference and the depth (<±0.7%). The growth rate of the outer film was reduced by 10% on average compared to that of the inner film due to the different gas flow mode.

12.
Opt Lett ; 46(6): 1269-1272, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33720164

RESUMEN

An 800 Gb/s/200 m free-space optical (FSO) link with a wavelength-division multiplexing (WDM)-four-level pulse amplitude modulation (PAM4) scheme and spatial light modulator (SLM)-based beam tracking technology is constructed. To the best of our knowledge, this is the first one that adopts a WDM-PAM4 scheme and an SLM-based beam tracking technology to simultaneously afford a high transmission capacity of 800 Gb/s and resolve the laser beam misalignment problem due to target device movement. By adopting a 16-wavelength WDM-PAM4 scheme, the transmission capacity of the FSO link is considerably enhanced with an 800 Gb/s (50Gb/sPAM4/λ×16λ) total capacity. By deploying an SLM-based beam tracking technology, the laser beam misalignment problem is practically resolved for providing an FSO link with high link accessibility. This demonstrated WDM-PAM4 FSO link fully meets the requirements of high-speed, long-reach, and high-reliability transmissions.

13.
Cell Mol Neurobiol ; 41(2): 353-364, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32342246

RESUMEN

Since microglia-associated neuroinflammation plays a pivotal role in the progression of white matter diseases, modulating microglial activation has been suggested as a potential therapeutic strategy. Here, we investigated the anti-inflammatory effects of fingolimod (FTY720) on microglia and analyzed the crosstalk between microglia autophagy and neuroinflammation. Lipopolysaccharide (LPS)-induced primary cultured microglia model was established. Microglial phenotypes were assessed by Western blot, quantitative real-time polymerase chain reaction (RT-PCR) and flow cytometry. Autophagy was evaluated by immunofluorescence, MDC staining and Western blot. Rapamycin was used to investigate the role of autophagic process in regulating microglial phenotypes. The signaling markers were screened by RT-PCR and Western blot. FTY720 shifted microglial phenotype from pro-inflammatory state to anti-inflammatory state and inhibited microglial autophagy under lipopolysaccharide (LPS) treatment. Rapamycin reversed the effect of FTY720 on phenotype transformation of microglia. The results of mechanism studies have shown that FTY720 notably repressed LPS-induced STAT1 activity, which was reactivated by rapamycin. Our research suggested that FTY720 could significantly transform pro-inflammatory microglia into anti-inflammatory microglia by suppressing autophagy via STAT1.


Asunto(s)
Antiinflamatorios/farmacología , Autofagia , Clorhidrato de Fingolimod/farmacología , Microglía/metabolismo , Microglía/patología , Factor de Transcripción STAT1/metabolismo , Animales , Autofagia/efectos de los fármacos , Células Cultivadas , Inflamación/patología , Lipopolisacáridos , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Modelos Biológicos , Fenotipo , Transducción de Señal/efectos de los fármacos
14.
Sensors (Basel) ; 21(2)2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33445661

RESUMEN

A compact ultra-wideband dual-polarized Vivaldi antenna is proposed for full polarimetric ground-penetrating radar (GPR) applications. A shared-aperture configuration comprising four Vivaldi elements for orthogonal polarizations is designed to reduce the low-end operating frequency and improve the port isolation with a compact antenna size. The directivity of the antenna is enhanced by the oblique position of the radiators and the implementation of a square loop reflector. Experimental results demonstrate that the antenna has very good impedance matching, port isolation, and dual-polarized radiation performance, with low dispersion characteristics across band of interest from 0.4 GHz to 3.0 GHz. GPR measurements with the designed antenna show that the antenna maintains good detection capability even for objects buried in a highly conductive soil.

15.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34638904

RESUMEN

Group A Streptococcus (GAS) causes invasive human diseases with the cytokine storm. Interleukin-33 (IL-33)/suppression of tumorigenicity 2 (ST2) axis is known to drive TH2 response, while its effect on GAS infection is unclear. We used an air pouch model to examine the effect of the IL-33/ST2 axis on GAS-induced necrotizing fasciitis. GAS infection induced IL-33 expression in wild-type (WT) C57BL/6 mice, whereas the IL-33- and ST2-knockout mice had higher mortality rates, more severe skin lesions and higher bacterial loads in the air pouches than those of WT mice after infection. Surveys of infiltrating cells in the air pouch of GAS-infected mice at the early stage found that the number and cell viability of infiltrating cells in both gene knockout mice were lower than those of WT mice. The predominant effector cells in GAS-infected air pouches were neutrophils. Absence of the IL-33/ST2 axis enhanced the expression of inflammatory cytokines, but not TH1 or TH2 cytokines, in the air pouch after infection. Using in vitro assays, we found that the IL-33/ST2 axis not only enhanced neutrophil migration but also strengthened the bactericidal activity of both sera and neutrophils. These results suggest that the IL-33/ST2 axis provided the protective effect on GAS infection through enhancing the innate immunity.


Asunto(s)
Inmunidad Innata/inmunología , Proteína 1 Similar al Receptor de Interleucina-1/inmunología , Interleucina-33/inmunología , Infecciones Estreptocócicas/inmunología , Streptococcus pyogenes/inmunología , Animales , Movimiento Celular/inmunología , Citocinas/inmunología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/microbiología , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Interleucina-33/genética , Interleucina-33/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/citología , Neutrófilos/inmunología , Neutrófilos/microbiología , Transducción de Señal/inmunología , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/fisiología
16.
Int J Mol Sci ; 22(21)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34769046

RESUMEN

Streptococcus pyogenes (group A Streptococcus (GAS) is an important human pathogen that can cause severe invasive infection, such as necrotizing fasciitis and streptococcal toxic shock syndrome. The mortality rate of streptococcal toxic shock syndrome ranges from 20% to 50% in spite of antibiotics administration. AR-12, a pyrazole derivative, has been reported to inhibit the infection of viruses, intracellular bacteria, and fungi. In this report, we evaluated the bactericidal activities and mechanisms of AR-12 on GAS infection. Our in vitro results showed that AR-12 dose-dependently reduced the GAS growth, and 2.5 µg/mL of AR-12 significantly killed GAS within 2 h. AR-12 caused a remarkable reduction in nucleic acid and protein content of GAS. The expression of heat shock protein DnaK and streptococcal exotoxins was also inhibited by AR-12. Surveys of the GAS architecture by scanning electron microscopy revealed that AR-12-treated GAS displayed incomplete septa and micro-spherical structures protruding out of cell walls. Moreover, the combination of AR-12 and gentamicin had a synergistic antibacterial activity against GAS replication for both in vitro and in vivo infection. Taken together, these novel findings obtained in this study may provide a new therapeutic strategy for invasive GAS infection.


Asunto(s)
Antibacterianos/farmacología , Gentamicinas/farmacología , Pirazoles/farmacología , Streptococcus pyogenes/efectos de los fármacos , Sulfonamidas/farmacología , Células A549 , Animales , Línea Celular , Línea Celular Tumoral , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Células RAW 264.7 , Choque Séptico/tratamiento farmacológico , Infecciones Estreptocócicas/tratamiento farmacológico , Células U937
17.
Opt Lett ; 45(22): 6206-6209, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-33186951

RESUMEN

A white-lighting and wavelength-division-multiplexing (WDM)-visible light communication (VLC) system with over 20 m of free-space distance and 3 m of lighting distance is demonstrated via a red/green/blue (R/G/B) triple-source polarization-multiplexing scheme, transmission gratings, and an engineered diffuser with a double-convex lens. Integrating four-level pulse amplitude modulation (PAM4) with a triple-source polarization-multiplexing scheme, the aggregate transmission rate is noticeably enhanced to 300 Gb/s [50Gb/sPAM4/source×3sources×2polarizations (p- and s-polarizations)]. White-light is produced by multiplexing the R/G/B lights with two transmission gratings and separated by demultiplexing them using the other two transmission gratings. By adopting an engineered diffuser with a double-convex lens, the white-light is diffused over 3 m of free-space distance to provide general white-light illumination (>100lux). This demonstrated white-lighting and WDM-VLC system meets a high aggregate transmission rate with a qualified indoor lighting target. It opens up a new category for lighting and communication.

18.
J Pharmacol Sci ; 143(3): 199-208, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32414690

RESUMEN

The optimum strategy for heart failure (HF) treatment has yet to be elucidated. This study intended to test the benefit of a combination of valsartan (VAL) and perifosine (PER), a specific AKT inhibitor, in protecting against pressure overload induced mouse HF. Mouse were subjected to aortic banding (AB) surgery to establish HF models and then were given vehicle (HF), VAL (50 mg/kg/d), PER (30 mg/kg/d) or combination of VAL and PER for 4 weeks. Mouse with sham surgery treated with VEH were used for control (VEH). VAL or PER treatment could significantly alleviate mouse heart weight, attenuate cardiac fibrosis and improve cardiac function. The combination treatment of VAL and PER presented much better benefit compared with VAL or PER group respectively. PER treatment significantly inhibited AKT/GSK3ß/mTORC1 signaling. Besides the classic AT1 inhibition, VAL treatment significantly inhibited MAPK (ERK1/2) signaling. Furthermore, VAL and PER treatment could markedly prevent neonatal rat cardiomyocyte hypertrophy and the activation of neonatal rat cardiac fibroblast. Combination of VAL and PER also presented superior beneficial effects than single treatment of VAL or PER in vitro experiments respectively. This study presented that the combination of valsartan and PER may be a potential treatment for HF prevention.


Asunto(s)
Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/prevención & control , Fosforilcolina/análogos & derivados , Presión/efectos adversos , Valsartán/administración & dosificación , Animales , Modelos Animales de Enfermedad , Quimioterapia Combinada , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Tamaño de los Órganos , Fosforilcolina/administración & dosificación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos
19.
Int J Neurosci ; 130(11): 1161-1165, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31971044

RESUMEN

Myelin oligodendrocyte glycoprotein (MOG) antibody-related encephalomyelitis is an increasingly recognized entity with heterogeneity in phenotype. Among all clinical phenotypes, encephalitis restricted to cerebral cortex might be most easily ignored and under-estimated type. Here, we described two cases of cerebral cortical encephalitis with MOG seropositivity to facilitate the awareness of the manifestations of the disease. In case 1, the patient presented with headaches and fevers turned out to have elevated CSF cells and cerebral cortical FLAIR hyperintense lesions in brain MRI. He was treated as intracranial infection during his first and second admission and fully resolved when discharged. During the patient's third admission, the patient experienced a seizure, and we found cerebral cortical FLAIR hyperintensity again and MOG antibody was positive in the serum. Therefore, we considered the patient suffered from MOG antibody encephalitis. In case 2, the patient also had headache, fever, and experienced a seizure. MOG antibody was positive in the serum and brain MRI showed cortical hyperintense lesions. Both the patients were young man, response well to corticosteroids and recovered completely. The two cases suggested that encephalitis, especially benign recurrent unilateral cerebral cortical encephalitis with epilepsy, might be a special phenotype of MOG antibody-associated disorders.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso/diagnóstico , Corteza Cerebral/patología , Encefalitis/diagnóstico , Epilepsia/diagnóstico , Glicoproteína Mielina-Oligodendrócito/inmunología , Adulto , Autoanticuerpos/sangre , Enfermedades Autoinmunes del Sistema Nervioso/inmunología , Enfermedades Autoinmunes del Sistema Nervioso/patología , Corteza Cerebral/diagnóstico por imagen , Encefalitis/inmunología , Encefalitis/patología , Encefalitis/fisiopatología , Epilepsia/inmunología , Epilepsia/patología , Epilepsia/fisiopatología , Humanos , Imagen por Resonancia Magnética , Masculino , Adulto Joven
20.
Sensors (Basel) ; 21(1)2020 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-33375350

RESUMEN

The main objective of a Cooperative Multiple-Input Multiple-Output (CMIMO) system is to improve network throughput and network coverage and save energy. By grouping wireless devices as virtual multi-antenna nodes, it can thus simulate the functions of multi-antenna systems. A Space-Time Block Code (STBC) was proposed to utilize the spatial diversity of MIMO systems to improve the diversity gain and coding gain. In this paper, we proposed a cooperative strategy based on STBC and CMIMO, which is referred to as Space-Time Block Coded Cooperative Multiple-Input Multiple-Output (STBC-CMIMO) to inherit the advantages from both STBC and CMIMO. The theoretical performance analysis for the proposed STBC-CMIMO is presented. The performance advantages of the STBC-CMIMO are also shown by simulations. In the simulations, it is demonstrated that STBC-CMIMO can obtain significant performance compared with the existing CMIMO system.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda