RESUMEN
We prepared 15 batches of Kaixin Powder benchmark samples with the decoction pieces of different batches. Further, we established the specific chromatograms and index component content determination method of Kaixin Powder benchmark samples and analyzed the peaks and similarity of the chromatograms. With sibiricose A5, sibiricose A6, polygalaxanthone Ⅲ, 3,6'-disinapoyl sucrose, ginsenoside Rb_1, β-asarone, α-asarone, and dehydropachymic acid as index components, the index component content determination method was established and 70%-130% of the mean content of each component was set as the range. The chromatograms of 15 batches of Kaixin Powder benchmark samples had a total of 22 characteristic peaks, among which 8 peaks were identified, which represented sibiricose A5, sibiricose A6, polygalaxanthone Ⅲ, 3,6'-disinapoyl sucrose, ginsenoside Rb_1, β-asarone, α-asarone, and dehydropachymic acid, respectively. The chromatograms shared the similarity of 0.992-0.999. The 15 batches of benchmark samples had sibiricose A5 of 0.34-0.55 mg·g~(-1), sibiricose A6 of 0.43-0.57 mg·g~(-1), polygalaxanthone Ⅲ of 0.12-0.19 mg·g~(-1), 3,6'-disinapoyl sucrose of 1.08-1.78 mg·g~(-1), ginsenoside Rb_1 of 0.33-0.62 mg·g~(-1), β-asarone of 2.34-3.72 mg·g~(-1), α-asarone of 0.11-0.22 mg·g~(-1), and dehydropachymic acid of 0.053-0.079 mg·g~(-1). This study established the specific chromatograms and index component content determination method of Kaixin Powder benchmark samples, and the method was simple, feasible, reproducible, and stable. This study provides a scientific basis for further research on the key chemical properties of the benchmark samples and preparations of Kaixin Powder.
Asunto(s)
Polvos , Ginsenósidos , Benchmarking , Medicamentos Herbarios Chinos/química , Sacarosa , Cromatografía Líquida de Alta Presión/métodosRESUMEN
Taking berberine (BBR) as an example, to study whether the supramolecular hydrogel formed by berberine and lotus root starch (Nelumbo nucifera Gaertn; LRS), a natural polysaccharide, affects the inhibition to Staphylococcus aureus and the ability of biofilm clearance. The chemical structure and rheological properties of BBR@LRS gel were characterized by infrared spectroscopy and rheometer. The in vitro release of supramolecular hydrogel was observed at pH = 1.2 and pH = 7.4. Broth dilution method and biofilm clearence experiment were used to observe the bacteriostasis and biofilm clearance respectively. Cytotoxicity test and in vitro hemolysis test were used to evaluate the biosafety preliminarily. The results showed that the LRS polysaccharide hydrogel could encapsulate BBR, and there was an interaction between them. The BBR@LRS gel had good rheological properties and biosafety, and played a role in solubility enhancement and slow release of BBR, which was stronger than BBR in inhibiting the growth of Staphylococcus aureus and clearing biofilm. This study provides reference for the effect of natural polysaccharide supramolecular hydrogels on biological functions of active components of traditional Chinese medicine.
RESUMEN
Ulcerative colitis(UC) is a recurrent, intractable inflammatory bowel disease. Coptidis Rhizoma and Bovis Calculus, serving as heat-clearing and toxin-removing drugs, have long been used in the treatment of UC. Berberine(BBR) and ursodeoxycholic acid(UDCA), the main active components of Coptidis Rhizoma and Bovis Calculus, respectively, were employed to obtain UDCA-BBR supramolecular nanoparticles by stimulated co-decocting process for enhancing the therapeutic effect on UC. As revealed by the characterization of supramolecular nanoparticles by field emission scanning electron microscopy(FE-SEM) and dynamic light scattering(DLS), the supramolecular nanoparticles were tetrahedral nanoparticles with an average particle size of 180 nm. The molecular structure was described by ultraviolet spectroscopy, fluorescence spectroscopy, infrared spectroscopy, high-resolution mass spectrometry, and hydrogen-nuclear magnetic resonance(H-NMR) spectroscopy. The results showed that the formation of the supramolecular nano-particle was attributed to the mutual electrostatic attraction and hydrophobic interaction between BBR and UDCA. Additionally, supramolecular nanoparticles were also characterized by sustained release and pH sensitivity. The acute UC model was induced by dextran sulfate sodium(DSS) in mice. It was found that supramolecular nanoparticles could effectively improve body mass reduction and colon shortening in mice with UC(P<0.001) and decrease disease activity index(DAI)(P<0.01). There were statistically significant differences between the supramolecular nanoparticles group and the mechanical mixture group(P<0.001, P<0.05). Enzyme-linked immunosorbent assay(ELISA) was used to detect the serum levels of tumor necrosis factor-α(TNF-α) and interleukin-6(IL-6), and the results showed that supramolecular nanoparticles could reduce serum TNF-α and IL-6 levels(P<0.001) and exhibited an obvious difference with the mechanical mixture group(P<0.01, P<0.05). Flow cytometry indicated that supramolecular nanoparticles could reduce the recruitment of neutrophils in the lamina propria of the colon(P<0.05), which was significantly different from the mechanical mixture group(P<0.05). These findings suggested that as compared with the mechanical mixture, the supramolecular nanoparticles could effectively improve the symptoms of acute UC in mice. The study provides a new research idea for the poor absorption of small molecules and the unsatisfactory therapeutic effect of traditional Chinese medicine and lays a foundation for the research on the nano-drug delivery system of traditional Chinese medicine.
Asunto(s)
Animales , Ratones , Colitis Ulcerosa/tratamiento farmacológico , Ácido Ursodesoxicólico/efectos adversos , Berberina/farmacología , Interleucina-6 , Factor de Necrosis Tumoral alfa/farmacología , Medicamentos Herbarios Chinos/farmacología , Colon , Nanopartículas , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad , Colitis/inducido químicamenteRESUMEN
It is a common understanding that turbidity and precipitation of traditional Chinese medicine are easy to occur in the process of decocting. At present, our research group found that the cause of "multi-phase of traditional Chinese medicine decoction" mainly came from the interaction between the effective components of traditional Chinese medicine, especially the interaction of acid and base components. For example, the Liquorice and Rhizoma chinensis was a supramolecular system formed by a large number of active components in the decoction (>30%), and could stably exist in the decoction system. In this study, the supramolecular part was extracted, and the morphology of the supramolecular part was characterized by scanning electron microscopy and dynamic light scattering. It was observed that the supramolecular particles were uniform in size and regular in shape. The main components of supramolecular sites were identified by liquid mass spectrometry (LC-MSn). The results of UV and IR spectra showed that the chemical components of Liquorice and Rhizoma chinensis in the co-decocting process collided with each other, and weak bonds were formed between the functional groups of the molecules, which then induced the aggregation to form supramolecules. Thereafter, Through the diarrhea model of mice, sensory evaluation and antibacterial activity evaluation found that Liquorice and Rhizoma chinensis decocted together enhanced the antibacterial activity of Rhizoma, and compatibility "reconcile" Rhizoma "big bitter cold" property compared with single decoction group and interval administration group. All animal experiments were approved by the Animal Ethics Committee of Beijing University of Chinese Medicine, and the relevant regulations of Beijing University of Chinese Medicine on experimental animals were strictly followed. In this study, supramolecular chemistry method was used to preliminarily discuss the scientific connotation of "increasing efficiency and decreasing toxicity" of Liquorice and Rhizoma chinensis combined decoction from three perspectives of "property, efficacy and taste", and provide new ideas for the basic research of "reconcile" compatibility of Liquorice.
RESUMEN
In order to study the contraindications of the compatibility of Flos Genkwa-Radix et Rhizoma Glycyrrhizae, in this study, the solubilizing and poisoning essence were explored. In this experiment, chromatographic assay, field emission scanning electron microscopy, MTT cytotoxicity evaluation, and other methods were used to study the main chemical components, morphology and toxicity of the ethyl acetate part of Flos Genkwa and its co-decoction with glycyrrhizic acid, in order to clarify Flos Genkwa-Radix et Rhizoma Glycyrrhizae incompatibility provides a new idea for the research on incompatibility of Flos Genkwa-Radix et Rhizoma Glycyrrhizae. The results showed that after co-decoction of the ethyl acetate part of Flos Genkwa with glycyrrhizic acid, high performance liquid chromatography (HPLC) detected the dissolution of the toxic component yuanhuacine of 54.8%, while yuanhuacine chromatographic peak was not detected in the Flos Genkwa ethyl acetate part of the single decoction. The increase of co-decoction dissolution rate was observed by scanning electron microscopy, and it was found that glycyrrhizic acid uniformly dispersed the fat-soluble components of Flos Genkwa into nano-scale particles, which improved the solubility and stability in the solution. Furthermore, the results of cytotoxicity evaluation showed that the survival rate of cells decreased after co-decoction, 4',6-diamidino-2-phenylindole (DAPI) staining also gave the same results. In summary, the co-decoction of the ethyl acetate part of Flos Genkwa with glycyrrhizic acid promotes the dissolution of the toxic component yuanhuacine, and makes the part form uniformly distributed nanoparticles, which is conducive to the absorption of the ingredient and increases the toxicity.
RESUMEN
The purpose of this study was to explore the interaction mechanism between glycyrrhiza protein and berberine in the decocting process of Rhizoma Coptidis and Liquorice and its effect on the pharmacodynamic effect. In this experiment, licorice crude protein was obtained from licorice decoction pieces, and it was found that licorice crude protein and berberine could form spherical supramolecular particles after decocting together. Morphological characterization was carried out by using Malvin particle size analyzer and emission scanning electron microscopy, and the supramolecular particles were observed to be nanoscale, which was significantly different from the morphology of licorice protein and berberine. The results of ultraviolet, infrared and fluorescence spectroscopy showed that the mechanism of molecular interaction was induced by weak bonds such as electrostatic attraction and hydrophobic interaction. Furthermore, the antimicrobial activity of berberine was significantly affected by the supramolecular particles of licorice protein-berberine, which were significantly different from the mechanical mixture. This study reveals the pharmacological value of macromolecular substances such as proteins in the decoction of licorice and Coptis chinensis from a new perspective, which is helpful to promote the secondary development of clinical effective prescriptions, especially the research on the pharmacological substance basis of classic famous prescriptions.
RESUMEN
The cross combination of dry-method(network pharmacology analysis) and wet-method(high-resolution mass spectro-metry with antioxidation experiment) was used to predict antioxidant quality markers(Q-markers) of Hippophae tibetana. Ultra-high performance liquid chromatography coupled with hybrid quadrupole-orbitrap mass spectrometry(UPLC-Q-Exactive Orbitrap-MS) was developed to rapidly separate and identify the chemical constituents in H. tibetana. Then in DPPH free radicals and superoxide anion scavenging experiment, the antioxidant activity of the four different polar parts with extracts of petroleumether, ethyl acetate, n-butanol and water was evaluated. Network pharmacology method was used for functional enrichment and pathway analysis to screen antioxidant-related components and preliminarily explain the mechanism of action. On this basis, multi-source information was integrated to predict the antioxidant Q-markers. The results showed that 51 components in H. tibetana were identified, including 18 flavonoids, 14 terpenoids, 6 alkaloids, 4 coumarins and phenylpropanoids, 3 volatile components and 2 polyphenols. The antioxidant capacity of different fractions: ethyl acetate > n-butanol > water > petroleum ether. The medicine mainly acted on PI3 K-Akt and FoxO signaling pathways to perform antioxidant effects through flavonoids such as quercetin, luteolin and kaempferol. According to the results of dry-method and wet-method, quercetin, luteolin and kaempferol, the representatives of poly-hydroxy flavone, may be the antioxidant Q-markers of H. tibetana. In this study, with the antioxidant Q-markers of H. tibetana as an example, an investigation model of predicting Q-marker was discussed based on the ternary system of composition, function and informatics, providing a scientific basis for the establishment of quality evaluation standards for H. tibetana.
Asunto(s)
Antioxidantes , Cromatografía Líquida de Alta Presión , Hippophae , Espectrometría de Masas , TecnologíaRESUMEN
The property of medicine is the "identity card" of traditional Chinese medicine (TCM), and the key to crack the theory of property of TCM. Based on molecular thermodynamics, the effects of interaction between TCM and organs in vitro were studied from the perspective of micro-energy release and absorption in order to construct a new idea of characterizing meridian theory. Scutellaria baicalensis, for example, application of isothermal titration calorimetry (ITC) were used to determine the energy changes during the interaction of Scutellaria baicalensis and its main active ingredient baicalin with brain, heart, lung, spleen and kidney in vitro, comparison including the association constant (Ka) and disassociation constant (Kd), combined with thermodynamic parameters, such as stoichiometry ratio (n), enthalpy change (ΔH), entropy change (ΔS), Gibbs free energy (ΔG), it is found that the interaction intensity between Scutellaria baicalensis and lung is significantly stronger than that of other organs, which is consistent with the theory of the return of Scutellaria baicalensis in ancient books. In addition, baicalin, the main active ingredient, showed the same action pattern as Scutellaria baicalensis. The thermodynamic parameters analysis showed that the action was a weak bond-induced spontaneous chemical binding reaction driven by both entropy and enthalpy. The results of specific curl measurement further proved the interaction between baicalin and lung, and were consistent with the results of ITC titration, indicating that ITC could be used to characterize the meridian tropism of TCM. Therefore, based on ITC, it is scientific and feasible to characterize the meridian of TCM by the energy change of the interaction between the decoction of TCM and its active components and the in vitro tissues respectively. This experiment provides a new idea for the discussion of meridian of TCM.
RESUMEN
It has been focused on that there will be precipitates when decoction of Scutellariat Radix mixed with Coptidis Rhizoma. Precipitation was derived from interaction between acidic and basic compounds. This study was based on the interaction between active ingredients after compatibility, strived to explore whether it was feasible to judge the qualities of different Scutellariat Radix by isothermal titration calorimetry (ITC), build a new method established to characterize the qualities of traditional Chinese medicine by taking a series of active ingredients as index. We selected Scutellariat Radix (including three batches of different Scutellariat Radix bought from market and immature Scutellariat Radix which usually was used as adulterant) in different batches as the samples. First, we used ITC to determine the binding heat of the reactions between berberine and the decoctions of different Scutellariat Radix. The test showed that the binding heat of berberine titrated Scutellariat Radix was Scutellariat Radix A (-317.20 μJ), Scutellariat Radix B (-292.83 μJ), Scutellariat Radix C (-208.95 μJ) and immature Scutellariat Radix (-21.53 μJ), respectively. We chose deionized water titrated by berberine (2.51 μJ) as control. The heat change of berberine titrated immature Scutellariat Radix was much less than berberine titrated Scutellariat Radix. Then we determined the absorbance of different decoctions of Scutellariat Radix by UV Spectrophotometry on the maximum absorption wavelength, and the result is: Scutellariat Radix A (0.372), Scutellariat Radix B (0.333), Scutellariat Radix C (0.272), immature Scutellariat Radix (0.124). The absorbance of immature Scutellariat Radix was also less than Scutellariat Radix. The result of ITC assay was corresponded to UV spectrophotometry test. In conclusion, ITC could be used to characterize the quality of Scutellariat Radix. The new method to characterize the qualities of traditional Chinese medicine by taking a kind of active ingredients as index building by ITC was simple, scientific and feasible.
RESUMEN
Ischemic brain injury is a major disease which threatens human health and safety. (3, 5, 6-trimethylpyrazin-2-yl) methyl 3-methoxy-4-[(3, 5, 6-trimethylpyrazin-2-yl) methoxy] benzoate (VA-T), a newly discovered lead compound, is effective for the treatment of ischemic brain injury and its sequelae. But the poor solubility of VA-T leads to poor dissolution and limited clinical application. In order to improve the dissolution of VA-T, the pharmaceutical technology of solid dispersions was used in the present study. VA-T/polyvinylpyrrolidone (PVP) solid dispersion was prepared by the solvent method. The dissolution studies were carried out and solid state characterization was evaluated by differential scanning calorimetry (DSC), infrared spectroscopy (IR), x-ray diffraction (XRD) and scanning electron microscopy (SEM). The dissolution rate of VA-T was significantly improved by solid dispersion compared to that of the pure drug and physical mixture. The results of DSC and XRD indicated that the VA-T solid dispersion was amorphous. The IR spectra showed the possible interaction between VA-T and PVP was the formulation of hydrogen bonding. The SEM analysis demonstrated that there was no VA-T crystal observed in the solid dispersions. The ideal drug-to-PVP ratio was 1:5. In conclusion, the solid dispersion technique can be successfully used for the improvement of the dissolution profile of VA-T.
Asunto(s)
Benzoatos , Química , Isquemia Encefálica , Quimioterapia , Química Farmacéutica , Métodos , Sistemas de Liberación de Medicamentos , Povidona , Química , SolubilidadRESUMEN
<p><b>OBJECTIVE</b>To discriminate and determine of the artificial bear bile of the compound bile capsule.</p><p><b>METHOD</b>Taking the pharmacopoeia as reference, the artificial bear bile was discriminated and determined by HPLC.</p><p><b>RESULT</b>The compound bile capsule and the control sample had chromatographic peak at the same time from HPLC. The content of the artificial bear bile was above 10 mg per tablets.</p><p><b>CONCLUSION</b>The artificial bear bile of compound bile capsules can be discriminated effectively and determined accurately by HPLC method.</p>
Asunto(s)
Animales , Bilis , Química , Cápsulas , Cromatografía Líquida de Alta Presión , Métodos , Análisis Discriminante , Medicina Tradicional China , Ácido Tauroquenodesoxicólico , UrsidaeRESUMEN
This research is to study the relationship between HPLC fingerprints of Moutan Cortex, Paeoniae Radix Rubra and Paeoniae Radix Alba and their activity on lipopolysaccharide-induced acute lung injury. HPLC fingerprints of each extract of Moutan Cortex,Paeoniae Radix Rubra and Paeoniae Radix Alba were established by an optimized HPLC-MS method. The activities of all samples against protein and tumor necrosis a factor were tested by the model of lipopolysaccharide-induced acute lung injury. The possible relationship between HPLC-MS fingerprints and the activitieswere deduced by the Partial least squares regression analysis method. Samples were analyzed by HPLC-MS/MS to identify the major peaks. The results showed that each sample had some effect on acute lung injury. Four components with a lager contribution rate of efficacy were calculated by the research of spectrum-effect relationship. Moutan Cortex exhibited good activity on acute lung injury, and gallic acid, paeoniflorin, galloylpaeoniflorin and paeonol were the main effective components.
Asunto(s)
Animales , Masculino , Ratas , Acetofenonas , Química , Farmacología , Lesión Pulmonar Aguda , Quimioterapia , Compuestos Bicíclicos Heterocíclicos con Puentes , Química , Farmacología , Cromatografía Líquida de Alta Presión , Métodos , Medicamentos Herbarios Chinos , Química , Farmacología , Ácido Gálico , Química , Farmacología , Glucósidos , Química , Farmacología , Lipopolisacáridos , Farmacología , Monoterpenos , Química , Farmacología , Paeonia , Química , Raíces de Plantas , Química , Ratas Wistar , Espectrometría de Masas en Tándem , MétodosRESUMEN
<p><b>OBJECTIVE</b>To study the major metabolites of antitumor lead compound T-OA (oleanolic acyl-3, 5, 6-trimethyl pyrazine-2-methyl ester) in rat urine, in order to preliminarily infer its metabolic mode in rats.</p><p><b>METHOD</b>Rat urines of the blank group, the raw material group (ligustrazine TMP and oleanolic acid OA Moore equivalent) and the T-OA group were collected and freeze-dried; Solids were extracted by ethyl acetate; And then the extracts were re-dissolved with acetonitrile. HPLC-HRMS coupling technique was adopted to find the potential mass spectrum peak under ESI(+) (see symbol) ESI(-) modes. Metabolite-related information was obtained by comparing the three groups of spectra.</p><p><b>RESULT</b>One metabolite of OA and two metabolites of TMP were identified in the raw material group; none metabolite of T-OA but one phase II metabolite was detected in the T-OA group.</p><p><b>CONCLUSION</b>It is the first time to identify one phase II metabolite of T-OA and one phase II metabolite of OA were identified in rat urine. On that basis, the researchers preliminarily inferred that T-OA does not show the efficacy in the form of raw material. The HPLC-HRMS method established could be used to identify metabolites of related derivative structures. This paper could also provide certain reference for designing pro-drugs based on oleanolic acid.</p>
Asunto(s)
Animales , Masculino , Ratas , Antineoplásicos , Química , Metabolismo , Orina , Cromatografía Líquida de Alta Presión , Métodos , Medicamentos Herbarios Chinos , Química , Metabolismo , Espectrometría de Masas , Métodos , Estructura Molecular , Ratas Sprague-DawleyRESUMEN
Ligustrazine, one of the major effective components of the Chinese traditional medicinal herb Ligusticum Chuanxiong Hort, has been reported plenty of biological activities, such as protect cardiovascular and cerebrovascular, neuroprotection and anti-tumor, et al. Because of its remarkable effects, studies on structural modification of ligustrazine have attracted much attention. Ligustrazine synthetic derivatives reported in recent decades are mainly derived from four primary intermediates (TMP-COOH, TMP-OH, TMP-NH2, HO-TMP-OH). To explore the neuroprotection activitiy of ligustrazine intermediates, six ligustrazine intermediates (2, 5, 8, 11, 12, 13) were synthesized and their protective effects against CoCl2-induced neurotoxicity in differentiated PC12 cells were studied. The target compounds were prepared via different chemical methods, including oxidation, substitution, esterification and amidation without changing the structure nucleus of ligustrazine. Compared with TMP (EC50 = 56.03 micromol x L(-1)), four compounds (2, 5, 12 and 13) exhibited higher activity (EC50 < 50 micromol x L(-1)) respectively, of which, compound 2 displayed the highest protective effect against the damaged PC12 cells (EC50 = 32.86 micromol x L(-1)), but target compounds 8 and 11 appeared lower activity (EC50 > 70 micromol x L(-1)). By structure-activity relationships analysis, the introduction of carboxyl, amino to the side chain of ligustrazine and appropriately increase the proportion of ligustrazine may contribute to enhance its neuroprotective activity, which provides a reference for the design, synthesis and activity screening of relevant series of ligustrazine derivatives in the future.
Asunto(s)
Animales , Ratas , Diferenciación Celular , Técnicas de Química Sintética , Cobalto , Toxicidad , Medicamentos Herbarios Chinos , Química , Fármacos Neuroprotectores , Química , Farmacología , Neurotoxinas , Toxicidad , Células PC12 , Pirazinas , Química , FarmacologíaRESUMEN
With related global patent data as analysis samples, worldwide patent overview of Ginkgo biloba preparation is analyzed in application, applicant, technical distribution and so on. This research shows that the most important areas of G. biloba preparation are Europe and China. The European applicants start earliest along with developing smoothly, moreover, their patents have best quality. The Chinese applicants start late along with the fastest growing, and have already certain research capabilities, moreover, their patents' quality needs to be improved. This research result provides reference for development of G. biloba preparation. The author suggest that Chinese applicants learn techniques and layout experiences of other's patents fully to enhance the level of new drug development and patent protection.
Asunto(s)
Humanos , Productos Biológicos , Química Farmacéutica , Recursos Humanos , Métodos , China , Europa (Continente) , Ginkgo biloba , Química , Patentes como AsuntoRESUMEN
To explore the effects of protocatechuic acid (PCA) and its derivants on angiogenesis of the chick embryo chorioallantoic membrane (CAM) and scavenging DPPH radical in vitro. The protection of benzyl and alkaline hydrolysis of benzyl ester were employed. The structures of PCA-1, PCA-2 and PCA-3, the derivates of PCA, were elucidated by 1H, 13C-NMR and MS data The bioactivity of PCA and its derivants was evaluated on the models of DPPH radical and chick embryo chorioallantoic membrane (CAM), respectively. PCA and PCA-1 showed the best activity of scavenging DPPH radical among all the compounds. In contrast to PCA-2, PCA and PCA-3 displayed inhibition to angiogenesis (P < 0.001). Pyrocatechol hydroxyl is the active site of PCA on scavenging DPPH radical in vitro. PCA with carboxyl and without pyrocatechol hydroxyl seems to show promotion to angiogenesis, but it needs more evidences.
Asunto(s)
Animales , Embrión de Pollo , Inductores de la Angiogénesis , Química , Compuestos de Bifenilo , Catecoles , Química , Membrana Corioalantoides , Medicamentos Herbarios Chinos , Química , Depuradores de Radicales Libres , Química , Hidroxibenzoatos , Química , Espectroscopía de Resonancia Magnética , Estructura Molecular , PicratosRESUMEN
Patent network of Chinese patent medicines is a patent group composed of several correlated patents around basic patents or core technologies characterized by traditional Chinese medicine technologies. With the clue of Tianjin Tasly Group's acquisition of seven compound Danshen patents characterized by extract feeds of Beijing Cairui Pharmaceutical Co., Ltd., we made an analysis on how Tasly builds a patent network themed on compound Danshen preparation products characterized by extract feeds, in hope of providing reference for other Chinese pharmaceutical enterprise to establish and improve key patent networks of traditional Chinese medicines.
Asunto(s)
Química Farmacéutica , Recursos Humanos , Métodos , China , Medicamentos Herbarios Chinos , Medicina Tradicional China , Métodos , Patentes como Asunto , Fenantrolinas , Salvia miltiorrhiza , QuímicaRESUMEN
To investigate the chemical constituents of seeds of Koelreuteria paniculata Laxm. , components were separated by means of solvent extraction and chromatography on C18, the structure of compound was determined by spectral analysis and chemical evidences. One saponin was obtained and identified as 28-O-isopentyryl-3beta, 16alpha, 22beta, 28-tetrahydroxyl-oleanane-3-O-[ alpha-L-rhamnopyranosyl- ( 1-->3) -betaD-galactopyranosyl-( 1--->4' )]-3betaD-galacturonopyranoside, named paniculata saponin C. This saponin is a new compound.