Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Sensors (Basel) ; 24(4)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38400368

RESUMEN

Sensor localization remains a crucial function within the context of wireless sensor networks (WSNs) and is a delicate concern that has attracted many researchers' attention. Undoubtedly, a good distance estimation between different wireless sensors allows us to estimate their accurate locations in the network well. In this article, we present a simple but very effective anchor-free localization scheme for wireless sensor networks called the contextual received signal strength approach (CRSSA) localization scheme. We use the received signal strength (RSS) values and the contextual network connectivity within an anchor-free WSN. We present and thoroughly analyze a novel joint estimation methodology for determining the range, path loss exponent (PLE), and inter-node distances in a composite fading model that addresses small-scale multipath fading and large-scale path loss shadowing effects. We formulate analytical expressions for key parameters, the node's communication range and the PLE value, as functions of the sensor's number, the network's connectivity, and the network density. Once these parameters are estimated, we estimate the inter-node distances and the positions of nodes, with relatively high accuracy, based on the assumed propagation model in a two-dimensional anchor-free WSN. The effectiveness of the CRSSA is evaluated through extensive simulations assuring its estimation accuracy in anchor-free localization.

2.
Sensors (Basel) ; 18(1)2018 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-29304002

RESUMEN

Energy Harvesting techniques are increasingly seen as the solution for freeing the wireless sensor nodes from their battery dependency. However, it remains evident that network performance features, such as network size, packet length, and duty cycle, are influenced by the sum of recovered energy. This paper proposes a new approach to defining the specifications of a stand-alone wireless node based on a Radio-frequency Energy Harvesting System (REHS). To achieve adequate performance regarding the range of the Wireless Sensor Network (WSN), techniques for minimizing the energy consumed by the sensor node are combined with methods for optimizing the performance of the REHS. For more rigor in the design of the autonomous node, a comprehensive energy model of the node in a wireless network is established. For an equitable distribution of network charges between the different nodes that compose it, the Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol is used for this purpose. The model considers five energy-consumption sources, most of which are ignored in recently used models. By using the hardware parameters of commercial off-the-shelf components (Mica2 Motes and CC2520 of Texas Instruments), the energy requirement of a sensor node is quantified. A miniature REHS based on a judicious choice of rectifying diodes is then designed and developed to achieve optimal performance in the Industrial Scientific and Medical (ISM) band centralized at 2.45 GHz . Due to the mismatch between the REHS and the antenna, a band pass filter is designed to reduce reflection losses. A gradient method search is used to optimize the output characteristics of the adapted REHS. At 1 mW of input RF power, the REHS provides an output DC power of 0.57 mW and a comparison with the energy requirement of the node allows the Base Station (BS) to be located at 310 m from the wireless nodes when the Wireless Sensor Network (WSN) has 100 nodes evenly spread over an area of 300 × 300 m 2 and when each round lasts 10 min . The result shows that the range of the autonomous WSN increases when the controlled physical phenomenon varies very slowly. Having taken into account all the dissipation sources coexisting in a sensor node and using actual measurements of an REHS, this work provides the guidelines for the design of autonomous nodes based on REHS.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda