Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Sci Total Environ ; 592: 426-435, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28340453

RESUMEN

The large increases in reactive nitrogen (N) deposition in developed countries since the Industrial Revolution have had a marked impact on ecosystem functioning, including declining species richness, shifts in species composition, and increased N leaching. A potential mitigation of these harmful effects is the action of N as a fertiliser, which, through increasing primary productivity (and subsequently, organic matter production), has the potential to increase ecosystem carbon (C) storage. Here we report the response of an upland heath to 10years of experimental N addition. We find large increases in plant and soil C and N pools, with N-driven C sequestration rates in the range of 13-138kgCkg-1. These rates are higher than those previously found in forest and lowland heath, mainly due to higher C sequestration in the litter layer. C sequestration is highest at lower N treatments (10, 20, and 40kgNha-1yr-1 above ambient), with evidence of saturation at the highest N treatment, reflecting a physiologically aged Calluna vulgaris (Calluna) canopy. To maintain these rates of sequestration, the Calluna canopy should be managed to maximise it's time in the building phase. Scaling our results across UK heathlands, this equates to an additional 0.77Mt CO2e per annum extra C sequestered into plant litter and the top 15cm of heathland soil as a result of N deposition. The bulk of this is found in the litter and organic soil horizons that hold an average of 23% and 54% of soil C, respectively. This additional C represents around 0.44% of UK annual anthropogenic GHG emissions. When considered in the context of falling biodiversity and altered species composition in heathland, policy focus should remain on reducing N emissions.

2.
Environ Toxicol Chem ; 25(3): 883-90, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16566175

RESUMEN

The critical load approach has been proposed for evaluation of the need to reduce atmospheric emissions of metals that lead to transboundary transport and deposition across Europe. The present study demonstrates and evaluates the application of a critical load approach for national-scale risk assessment of metal deposition in the United Kingdom. Critical load maps, calculated using critical limits based on pH-dependent free metal ion activities, are presented. Current concentrations of lead and cadmium in soils are compared with two sets of critical limit values: First, limits based on the reactive soil concentration, and second, a pH-dependent free ion critical limit function, which takes into account variable soil characteristics across the country. The use of these two models leads to different conclusions about which areas of the United Kingdom are at greatest risk, partly because of differences in the range of values of pH and organic matter in soils used in ecotoxicological experiments and in the national database. Critical loads were calculated based on free ion critical limits; the critical loads were lowest in the south and east of the country and were associated with higher soil pH, lower runoff, and lower soil organic matter.


Asunto(s)
Cadmio/análisis , Monitoreo del Ambiente/métodos , Plomo/análisis , Metales/análisis , Contaminantes del Suelo/análisis , Atmósfera , Ambiente , Concentración de Iones de Hidrógeno , Iones , Medición de Riesgo , Suelo , Reino Unido
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda