Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Luminescence ; 39(7): e4842, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39051524

RESUMEN

In order to make commercial products less vulnerable to counterfeiting, thermochromic inks have proven to be a viable authentication strategy. Herein, we developed a thermochromic ink for authentication by combining an anthocyanidin (ACYD) extract with alginate (ALG). To increase the anthocyanidin/alginate ink stability, a mordant (ferrous sulfate) was employed to tie up the anthocyanidin biomolecules with alginate. ACYD was extracted from red-cabbage and then immobilized into alginate to serve as an environmentally friendly spectroscopic probe. Thermochromic composite inks (ACYD@ALG) were made by adjusting the content of anthocyanidin. A homogenous blue film (608 nm) was printed on a paper surface and investigated by the CIE Lab coordinate system. The blue color transformed into reddish (477 nm) when heated from 35°C to 65°C. Nanoparticles (NPs) of anthocyanidin/mordant (ACYD/M) were examined for their size and morphology to indicate diameters of 80-90 nm, whereas the ACYD/M-encapsulated alginate nanoparticles showed diameters of 120-150 nm. Multiple analytical techniques were utilized to examine the printed papers. The mechanical and rheological performance of both stamped sheets and ink fluid were explored. The cytotoxicity and antimicrobial efficacy of ink (ACYD@ALG) were investigated.


Asunto(s)
Alginatos , Antocianinas , Tinta , Nanopartículas , Alginatos/química , Antocianinas/química , Antocianinas/farmacología , Nanopartículas/química , Temperatura , Tamaño de la Partícula , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Pruebas de Sensibilidad Microbiana , Humanos , Propiedades de Superficie
2.
ACS Omega ; 9(28): 30725-30736, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39035899

RESUMEN

In the current world, storing and converting energy without affecting the natural ecosystem are considered a sustainable and efficient green energy source production technology. Especially, using low-cost, environmentally friendly, and high-cycle stability activated carbon (AC) from the water hyacinth (Eichhornia crassipes) waste material for charge storage application is the current attractive strategy for renewable energy generation. In this study, preparation of AC from water hyacinth using a mixed chemical activation agent followed by activation time was optimized by the I-optimal coordinate exchange design model based on a 3-factor/3-level strategy under nine experimental runs. The optimum conditions to prepare AC were found to be potassium hydroxide (≈17 g) and potassium carbonate (≈11 g), and the carbonization time was approximately 1 h. Under these augmented conditions, the maximum specific capacitance suggested by the designed model was found to be ≈75.2 F/g. The regression coefficient (R 2 = 0.9979), adjusted (R 2 = 0.9917), predicted (R 2 = 0.8706), adequate precision (39.2795), and p-values (0.0062) proved the good correlation between actual and predicted values. The physicochemical and electrochemical properties of the final optimized AC were characterized by thermogravimetric/differential thermal analysis (TGA/DTA), X-ray diffractometry (XRD), Fourier transform infrared (FTIR), Brunauer-Emmett-Teller (BET), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), selected area electron diffraction (SAED), and potentiostat (CV and EIS) instruments. Finally, the optimized AC electrode after 100 cycles at a current density of 2 A g-1 retains an efficiency of 71.57%, indicating the good stability and sustainability of this material.

3.
Heliyon ; 10(18): e37943, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39347417

RESUMEN

In this work, we demonstrated for the first time, use of Europium doped lanthanum silicate nanoparticles (LS NPs) as electrodes for supercapacitor applications. Europium (Eu3+) doped (5 mol%) LS NPs were synthesized by green solution combustion method using Mexican mint leaf extracts. Various analytical techniques such as High-Resolution Transmission Electron Microscopy (HRTEM), Selected Area Diffraction (SAED), Powder X-ray Diffraction (PXRD), Fourier Transform Infra-Red Spectroscopy (FTIR) and Diffuse Reflectance Spectroscopy (DRS) techniques were used to confirm the morphological and structural characteristics of the synthesized nanoparticles. The HRTEM and SAED patterns confirms the formation of NPs having agglomerated structure with a particle size less than 50 nm. The PXRD patterns reveals crystalline cubic structure for the NPs. Further, the FT-IR spectra reveal the successful doping of Europium in Lanthanum Silicate NPs. The DRS (Diffuse Reflectance Spectroscopy) studies confirm the reduced band gap for Europium (Eu3+) doped (5 mol%) LS NPs. Cyclic voltametric and electrochemical impedance spectroscopy experiments were performed in an alkaline medium to compare the electrochemical activity of Eu3+ doped LS NPs with that of their undoped counterpart. The Eu3+ doped (5 %) LS NPs electrodes attained a specific capacitance of 373.3 Fg-1 at a current density of 0.5 Ag-1 in comparison to pure LS NPs which is about 267 Fg-1. The long-term stability of the Eu3+ doped (5 %) LS NPs electrodes show excellent stability up to 4000 cycles of operation in comparison pure LS NPs electrodes. Doping of Eu3+ had a favourable effect on the conductivity and electrochemical activity of LS NPs. Due to favourable green combustion synthesis, superior electrochemical performance, these Eu3+ doped LS NPs could be potential materials for new generation supercapacitors in energy storage applications.

4.
ChemistryOpen ; : e202400203, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39246219

RESUMEN

Doping enhances the optical properties of high-band gap zinc oxide nanoparticles (ZnO NPs), essential for their photocatalytic activity. We used the combustion approach to synthesize cobalt-doped ZnO heterostructure (CDZO). By creating a mid-edge level, it was possible to tune the indirect band gap of the ZnO NPs from 3.1 eV to 1.8 eV. The red shift and reduction in the intensity of the photoluminescence (PL) spectra resulted from hindrances in electron-hole recombination and sp-d exchange interactions. These improved optical properties expanded the absorption of solar light and enhanced charge transfer. The field emission scanning electron microscopy (FESEM) image and elemental mapping analysis confirmed the CDZO's porous nature and the dopant's uniform distribution. The porosity, nanoscale size (25-55 nm), and crystallinity of the CDZO were further verified by high-resolution transmission electron microscopy (HRTEM) and selected area electron image analysis. The photocatalytic activity of the CDZO exhibited much greater efficiency (k=0.131 min-1) than that of ZnO NPs (k=0.017 min-1). Therefore, doped heterostructures show great promise for industrial-scale environmental remediation applications.

5.
Heliyon ; 10(3): e25065, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38317972

RESUMEN

In the recent past Metal-organic frameworks (MOFs) based thin films have demonstrated superior performance in various technological applications such as optical and optoelectronic devices, electrochemical energy storage, catalysis, and sensing. Herein we report tuning the optical performance of stable complexes using Cu and Fe metal ions with carboxylate benzene dicarboxylic (BDC), leading toward the formation of novel MOF structures. The formation of Cu-BDC and Fe-BDC were confirmed by XRD and SEM studies. The thermal stability of two MOFs was investigated, indicating that, the Cu-BDC is more stable than Fe-BDC. Further, the optical properties were investigated in the wavelength range 325-1100 nm, and the Fe-BDC exhibited greater optical transmission properties than Cu-BDC by 33 %, as investigated by Wemple-DiDomenico and Tauc models. The dispersion parameters related to optical studies for Cu-BDC were better in comparison to Fe-BDC, which could be attributed to the increase in Cu valence electrons due to an increase in the number of cations. The electrochemical behavior in terms of CV measurements shows the presence of pseudo capacitance in both Fe-BDC and Cu-BDC MOFs. The improved CV performance of Cu-BDC MOF suggests that it could be used as a storage material. This work successfully demonstrates the tailoring of optical properties related to MOF thin films through the formation of stable complexes using BDC as a potential material for the fabrication of OLED's and Solar cells. The improved CV performance suggests that these MOF based materials could be used as anodes in fabrication of batteries or supercapacitors.

6.
PLoS One ; 19(4): e0299079, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38630772

RESUMEN

Organic photovoltaic cells are a promising technology for generating renewable energy from sunlight. These cells are made from organic materials, such as polymers or small molecules, and can be lightweight, flexible, and low-cost. Here, we have created a novel mixture of magnesium phthalocyanine (MgPc) and chlorophenyl ethyl diisoquinoline (Ch-diisoQ). A coating unit has been utilized in preparing MgPc, Ch-diisoQ, and MgPc-Ch-diisoQ films onto to FTO substrate. The MgPc-Ch-diisoQ film has a spherical and homogeneous surface morphology with a grain size of 15.9 nm. The optical absorption of the MgPc-Ch-diisoQ film was measured, and three distinct bands were observed at 800-600 nm, 600-400 nm, and 400-250 nm, with a band gap energy of 1.58 eV. The current density-voltage and capacitance-voltage measurements were performed to analyze the photoelectric properties of the three tested cells. The forward current density obtained from our investigated blend cell is more significant than that for each material by about 22%. The photovoltaic parameters (Voc, Isc, and FF) of the MgPc-Ch-diisoQ cell were found to be 0.45 V, 2.12 µA, and 0.4, respectively. We believe that our investigated MgPc-Ch-diisoQ film will be a promising active layer in organic solar cells.


Asunto(s)
Grano Comestible , Isoindoles , Magnesio , Capacidad Eléctrica , Electrónica , Indoles
7.
Sci Rep ; 13(1): 22321, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-38102239

RESUMEN

The present analysis aims to use existing resources to lower the cost of electrodes and reduce environmental pollution by utilizing waste materials like green algae. In the present research, the hydrothermal carbonization technique was utilized to synthesize a nano sized CuO mixed with activated biochar (CuO@BC) extracted from red sea algae (Chlorophyta). The CuO@BC sample was extensively examined using several advanced physical techniques, such as UV/Visible spectroscopy, FTIR, XED, HRTEM, SEM, EDX, BET, and TGA. The HRTEM indicated that the size of the particles is 32 nm with a larger surface area and without aggregations. The BET analysis of CuO@BC indicates that the material contains pores of a relatively large size and with a pore diameter of about 42.56 A°. The electrochemical analysis of CuO@BC modified glassy carbon electrode CuO@BC/GCE has been investigated using CV, GCD, and EIS techniques. This CuO@BC/GCE shows excellent electrochemical features that are significant for energy storage applications. The CuO@BC/GCE showed a specific capacitance of approximately 353 Fg-1 which is higher compared to individual materials. Overall, the research outcomes suggest that the CuO@BC/GCE shows potential for use in high-performance supercapacitors as energy storage systems that are eco-friendly and sustainable.


Asunto(s)
Cobre , Nanopartículas , Cobre/química , Carbono , Microscopía Electrónica de Transmisión , Electrodos
8.
Sci Rep ; 13(1): 2169, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36750645

RESUMEN

Lithium-ion batteries based on high-voltage cathode materials, such as LiCoPO4, despite being promising in terms of specific power, still suffer from poor cycle life due to the lower stability of common non-aqueous electrolytes at higher voltages. One way to overcome this issue might be decreasing the working potential of the battery by doping LiCoPO4 by Fe, thus reducing electrolyte degradation upon cycling. However, such modification requires a deep understanding of the structural behavior of cathode material upon lithiation/delithiation. Here we used a combination of operando synchrotron-based XRD and XAS to investigate the dynamics of d-metal local atomic structure and charge state upon cycling of LiCo0.5Fe0.5PO4 mixed d-metal olivine cathode material. Principal components analysis (PCA) of XAS data allowed the extraction of spectra of individual phases in the material and their concentrations. For both Co and Fe two components were extracted, they correspond to fully lithiated and delithiated phases of LixMPO4 (where M = Fe, Co). Thus, we were able to track the phase transitions in the material upon charge and discharge and quantitatively analyze the M2+/M3+ electrochemical conversion rate for both Fe and Co. Rietveld's refinement of XRD data allowed us to analyze the changes in the lattice of cathode material and their reversibility upon (de)lithiation during cycling. The calculation of DFT and Bader charge analysis expects the oxygen redox procedure combined with d-metals redox, which supplements iron charge variations and dominates at high voltages when x < 0.75 in LixCoFePO4.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 238: 118448, 2020 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-32388233

RESUMEN

The present study is focused on the assembly of two new thin films based on the direct layer deposition of lanthanum ion from solution with two aryl-azo-pyrogallol ligands onto the surface of a glass substrate. Assembled lanthanum (III) complexes were characterized by different techniques including thermal gravimetric analysis, metal analysis by acid digestion and complexometric titration, Fourier transforms infrared, transmission electron microscopy, and X-ray diffraction. Two complexes were highly similar in their patterns and crystallinities with the characterized particle size range 23.16-23.31 nm. Energy gaps of the two complexes NS Na3La(III)-(L1)2 and NS Na3La(III)-(L2)2 were found to be 2.09 and 2.33 eV, respectively. Linear and calculated nonlinear optical properties have been studied for the two complexes. The nonlinear refractive index has been calculated and NS Na3La(III)-(L2)2 showed a high nonlinear behavior (n2 = 8 × 10-7 esu) and it could be a promising low-cost material in the optical nonlinear application.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 184: 134-140, 2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28494375

RESUMEN

Nanosized (NS) cobalt (II) bis(5-phenyl-azo-8-hydroxyquinolate) (NS Co(II)-(5PA-8HQ)2) thin films have been synthesized using static step-by-step soft surface reaction (SS-b-SSR) technique. Structural and optical characterizations of these thin films have been carried out using thermal gravimetric analysis (TGA), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HR-TEM) and X-ray diffraction (XRD). The HR-TEM results revealed that the assembled Co(II)-complex exhibited a uniformly NS structure particles in the form of nanorods with width and length up to 16.90nm and 506.38nm, respectively. The linear and nonlinear optical properties have been investigated. The identified energy gap of the designed thin film materials was found 4.01eV. The refractive index of deposited Co(II)-complex thin film was identified by thickness-dependence and found as 1.9 at wavelength 1100nm. In addition, the refractive index was varied by about 0.15 due to an increase in the thickness by 19nm.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda