Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Proc Natl Acad Sci U S A ; 112(44): E5980-9, 2015 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-26499247

RESUMEN

Phenotypic and genetic variation in one species can influence the composition of interacting organisms within communities and across ecosystems. As a result, the divergence of one species may not be an isolated process, as the origin of one taxon could create new niche opportunities for other species to exploit, leading to the genesis of many new taxa in a process termed "sequential divergence." Here, we test for such a multiplicative effect of sequential divergence in a community of host-specific parasitoid wasps, Diachasma alloeum, Utetes canaliculatus, and Diachasmimorpha mellea (Hymenoptera: Braconidae), that attack Rhagoletis pomonella fruit flies (Diptera: Tephritidae). Flies in the R. pomonella species complex radiated by sympatrically shifting and ecologically adapting to new host plants, the most recent example being the apple-infesting host race of R. pomonella formed via a host plant shift from hawthorn-infesting flies within the last 160 y. Using population genetics, field-based behavioral observations, host fruit odor discrimination assays, and analyses of life history timing, we show that the same host-related ecological selection pressures that differentially adapt and reproductively isolate Rhagoletis to their respective host plants (host-associated differences in the timing of adult eclosion, host fruit odor preference and avoidance behaviors, and mating site fidelity) cascade through the ecosystem and induce host-associated genetic divergence for each of the three members of the parasitoid community. Thus, divergent selection at lower trophic levels can potentially multiplicatively and rapidly amplify biodiversity at higher levels on an ecological time scale, which may sequentially contribute to the rich diversity of life.


Asunto(s)
Avispas/fisiología , Animales , ADN Mitocondrial/genética , Repeticiones de Microsatélite/genética , Datos de Secuencia Molecular , Avispas/clasificación , Avispas/genética
2.
Infect Genet Evol ; 114: 105496, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37678701

RESUMEN

Bacillus anthracis, the bacterial cause of anthrax, is a zoonosis affecting livestock and wildlife often spilling over into humans. In Vietnam, anthrax has been nationally reportable since 2015 with cases occurring annually, mostly in the northern provinces. In April 2022, an outbreak was reported in Son La province following the butchering of a water buffalo, Bubalus bubalis. A total of 137 humans from three villages were likely exposed to contaminated meat from the animal. Early epidemiological investigations suggested a single animal was involved in all exposures. Five B. anthracis isolates were recovered from human clinical cases along with one from the buffalo hide, another from associated maggots, and one from soil at the carcass site. The isolates were whole genome sequenced, allowing global, regional, and local molecular epidemiological analyses of the outbreak strains. All recovered B. anthracis belong to the A.Br.001/002 lineage based on canonical single nucleotide polymorphism analysis (canSNP). Although not previously identified in Vietnam, this lineage has been identified in the nearby countries of China, India, Indonesia, Thailand, as well as Australia. A twenty-five marker multi-locus variable number tandem repeat analysis (MLVA-25) was used to investigate the relationship between human, soil, and buffalo strains. Locally, four MLVA-25 genotypes were identified from the eight isolates. This level of genetic diversity is unusual for the limited geography and timing of cases and differs from past literature using MLVA-25. The coupled spatial and phylogenetic data suggest this outbreak originated from multiple, likely undetected, animal sources. These findings were further supported by local news reports that identified at least two additional buffalo deaths beyond the initial animal sampled in response to the human cases. Future outbreak response should include intensive surveillance for additional animal cases and additional molecular epidemiological traceback to identify pathogen sources.


Asunto(s)
Carbunco , Bacillus anthracis , Animales , Humanos , Carbunco/epidemiología , Carbunco/veterinaria , Carbunco/microbiología , Filogenia , Vietnam/epidemiología , Núcleo Familiar , Polimorfismo de Nucleótido Simple , Genotipo , Brotes de Enfermedades
3.
Artículo en Inglés | MEDLINE | ID: mdl-34574369

RESUMEN

Aedes albopictus is a cosmopolitan mosquito species capable of transmitting arboviruses such as dengue, chikungunya, and Zika. To control this and similar species, public and private entities often rely on pyrethroid insecticides. In this study, we screened Ae. albopictus collected from June to August 2017 in Mecklenburg County, a rapidly growing urban area of North Carolina, for mutations conferring pyrethroid resistance and examined spatiotemporal patterns of specimen size as measured by wing length, hypothesizing that size variation could be closely linked to local abundance, making this easily measured trait a useful surveillance proxy. The genetic screening results indicated that pyrethroid resistance alleles are not present in this population, meaning that this population is likely to be susceptible to this commonly used insecticide class. We detected no significant associations between size and abundance-related factors, indicating that wing-size is not a useful proxy for abundance, and thus not useful to surveillance in this capacity. However, mosquitoes collected in June were significantly larger than July or August, which may result from meteorological conditions, suggesting that short-term weather cues may modulate morphological traits, which could then affect local fecundity and virus transmission dynamics, as previously reported.


Asunto(s)
Aedes , Insecticidas , Piretrinas , Infección por el Virus Zika , Virus Zika , Aedes/genética , Animales , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Mosquitos Vectores/genética , Mutación
4.
mSphere ; 5(2)2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32350095

RESUMEN

The incidence of locally acquired dengue infections increased during the last decade in the United States, compelling a sustained research effort concerning the dengue mosquito vector, Aedes aegypti, and its microbiome, which has been shown to influence virus transmission success. We examined the "metavirome" of four populations of Aedes aegypti mosquitoes collected in 2016 to 2017 in Manatee County, FL. Unexpectedly, we discovered that dengue virus serotype 4 (DENV4) was circulating in these mosquito populations, representing the first documented case of such a phenomenon in the absence of a local DENV4 human case in this county over a 2-year period. We confirmed that all of the mosquito populations carried the same DENV4 strain, assembled its full genome, validated infection orthogonally by reverse transcriptase PCR, traced the virus origin, estimated the time period of its introduction to the Caribbean region, and explored the viral genetic signatures and mosquito-specific virome associations that potentially mediated DENV4 persistence in mosquitoes. We discuss the significance of prolonged maintenance of the DENV4 infections in A. aegypti that occurred in the absence of a DENV4 human index case in Manatee County with respect to the inability of current surveillance paradigms to detect mosquito vector infections prior to a potential local outbreak.IMPORTANCE Since 1999, dengue outbreaks in the continental United States involving local transmission have occurred only episodically and only in Florida and Texas. In Florida, these episodes appear to be coincident with increased introductions of dengue virus into the region through human travel and migration from countries where the disease is endemic. To date, the U.S. public health response to dengue outbreaks has been largely reactive, and implementation of comprehensive arbovirus surveillance in advance of predictable transmission seasons, which would enable proactive preventative efforts, remains unsupported. The significance of our finding is that it is the first documented report of DENV4 transmission to and maintenance within a local mosquito vector population in the continental United States in the absence of a human case during two consecutive years. Our data suggest that molecular surveillance of mosquito populations in high-risk, high-tourism areas of the United States may enable proactive, targeted vector control before potential arbovirus outbreaks.


Asunto(s)
Aedes/virología , Virus del Dengue/clasificación , Mosquitos Vectores/virología , Viroma , Animales , Virus del Dengue/aislamiento & purificación , Brotes de Enfermedades , Femenino , Florida , Genoma Viral , Estaciones del Año , Serogrupo
5.
Artículo en Inglés | MEDLINE | ID: mdl-30813558

RESUMEN

Dengue fever is an emerging infectious disease in the Galápagos Islands of Ecuador, with the first cases reported in 2002 and subsequent periodic outbreaks. We report results of a 2014 pilot study conducted in Puerto Ayora (PA) on Santa Cruz Island, and Puerto Baquerizo Moreno (PB) on San Cristobal Island. To assess the socio-ecological risk factors associated with dengue and mosquito vector presence at the household level, we conducted 100 household surveys (50 on each island) in neighborhoods with prior reported dengue cases. Adult mosquitoes were collected inside and outside the home, larval indices were determined through container surveys, and heads of households were interviewed to determine demographics, self-reported prior dengue infections, housing conditions, and knowledge, attitudes, and practices regarding dengue. Multi-model selection methods were used to derive best-fit generalized linear regression models of prior dengue infection, and Aedes aegypti presence. We found that 24% of PB and 14% of PA respondents self-reported a prior dengue infection, and more PB homes than PA homes had Ae. aegypti. The top-ranked model for prior dengue infection included several factors related to human movement, household demographics, access to water quality issues, and dengue awareness. The top-ranked model for Ae. aegypti presence included housing conditions, mosquito control practices, and dengue risk perception. This is the first study of dengue risk and Ae. aegypti presence in the Galápagos Islands.


Asunto(s)
Aedes/crecimiento & desarrollo , Dengue/epidemiología , Mosquitos Vectores/crecimiento & desarrollo , Animales , Ecuador/epidemiología , Humanos , Larva/crecimiento & desarrollo , Proyectos Piloto , Factores de Riesgo , Medio Social , Factores Socioeconómicos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda