Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37108388

RESUMEN

Covalent peptidomimetic protease inhibitors have gained a lot of attention in drug development in recent years. They are designed to covalently bind the catalytically active amino acids through electrophilic groups called warheads. Covalent inhibition has an advantage in terms of pharmacodynamic properties but can also bear toxicity risks due to non-selective off-target protein binding. Therefore, the right combination of a reactive warhead with a well-suited peptidomimetic sequence is of great importance. Herein, the selectivities of well-known warheads combined with peptidomimetic sequences suited for five different proteases were investigated, highlighting the impact of both structure parts (warhead and peptidomimetic sequence) for affinity and selectivity. Molecular docking gave insights into the predicted binding modes of the inhibitors inside the binding pockets of the different enzymes. Moreover, the warheads were investigated by NMR and LC-MS reactivity assays against serine/threonine and cysteine nucleophile models, as well as by quantum mechanics simulations.


Asunto(s)
Peptidomiméticos , Inhibidores de Proteasas , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Peptidomiméticos/farmacología , Simulación del Acoplamiento Molecular , Aminoácidos/química , Cisteína/metabolismo
2.
Bioorg Med Chem ; 47: 116392, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34509861

RESUMEN

In recent years, dengue virus (DENV) and Zika virus (ZIKV), both mosquito-borne members of the Flaviviridae family, have emerged as intercontinental health issues since their vectors have spread from their tropical origins to temperate climate zones due to climate change and increasing globalization. DENV and ZIKV are positive-sense, single-stranded RNA viruses, whose genomes consist of three structural (capsid, membrane precursor, envelope) and seven non-structural (NS) proteins, all of which are initially expressed as a single precursor polyprotein. For virus maturation, the polyprotein processing is accomplished by host proteases and the viral NS2B/NS3 protease complex, whose inhibitors have been shown to be effective antiviral agents with loss of viral pathogenicity. In this work, we elucidate new structure-activity relationships of benzo[d]thiazole-based allosteric NS2B/NS3 inhibitors. We developed a new series of Y-shaped inhibitors, which, with its larger hydrophobic contact surface, should bind to previously unaddressed regions of the allosteric NS2B/NS3 binding pocket. By scaffold-hopping, we varied the benzo[d]thiazole core and identified benzofuran as a new lead scaffold shifting the selectivity of initially ZIKV-targeting inhibitors to higher activities towards the DENV protease. In addition, we were able to increase the ligand efficiency from 0.27 to 0.41 by subsequent inhibitor truncation and identified N-(5,6-dihydroxybenzo[d]thiazol-2-yl)-4-iodobenzamide as a novel sub-micromolar NS2B/NS3 inhibitor. Utilizing cell-based assays, we could prove the antiviral activity in cellulo. Overall, we report new series of sub-micromolar allosteric DENV and ZIKV inhibitors with good efficacy profile in terms of cytotoxicity and protease inhibition selectivity.


Asunto(s)
Benzotiazoles/farmacología , Inhibidores de Proteasas/farmacología , Serina Endopeptidasas/metabolismo , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas Virales/antagonistas & inhibidores , Regulación Alostérica/efectos de los fármacos , Benzotiazoles/síntesis química , Benzotiazoles/química , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Inhibidores de Proteasas/síntesis química , Inhibidores de Proteasas/química , Relación Estructura-Actividad , Proteínas no Estructurales Virales/metabolismo , Proteínas Virales/metabolismo
3.
Biospektrum (Heidelb) ; 27(3): 254-256, 2021.
Artículo en Alemán | MEDLINE | ID: mdl-33994673

RESUMEN

The SARS-CoV-encoded papain-like cysteine protease (PLpro) plays crucial roles in viral replication and maturation processes. It is required to cleave the precursor polyproteins into functional proteins. Thus, it is considered to be a promising target for developing specific drugs. For rational optimization of hit compounds, information about the structure-activity relationship (SAR) is fundamental. Herein, we characterize isoindolines as a new class of PLpro inhibitors.

4.
Protein Sci ; 32(1): e4526, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36461913

RESUMEN

Ligand binding to proteins often is accompanied by conformational transitions. Here, we describe a competition assay based on single molecule Förster resonance energy transfer (smFRET) to investigate the ligand-induced conformational changes of the dengue virus (DENV) NS2B-NS3 protease, which can adopt at least two different conformations. First, a competitive ligand was used to stabilize the closed conformation of the protease. Subsequent addition of the allosteric inhibitor reduced the fraction of the closed conformation and simultaneously increased the fraction of the open conformation, demonstrating that the allosteric inhibitor stabilizes the open conformation. In addition, the proportions of open and closed conformations at different concentrations of the allosteric inhibitor were used to determine its binding affinity to the protease. The KD value observed is in accordance with the IC50 determined in the fluorometric assay. Our novel approach appears to be a valuable tool to study conformational transitions of other proteases and enzymes.


Asunto(s)
Virus del Dengue , Virus del Dengue/metabolismo , Péptido Hidrolasas/metabolismo , Ligandos , Transferencia Resonante de Energía de Fluorescencia , Proteínas no Estructurales Virales/química , Antivirales/química
5.
Curr Med Chem ; 29(4): 635-665, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34042026

RESUMEN

Due to its fast international spread and substantial mortality, the coronavirus disease COVID-19 evolved to a global threat. Since there is currently no causative drug against this viral infection available, science is striving for new drugs and other approaches to treat the new disease. Studies have shown that the cell entry of coronaviruses into host cells takes place through the binding of the viral spike (S) protein to cell receptors. Priming of the S protein occurs via hydrolysis by different host proteases. The inhibition of these proteases could impair the processing of the S protein, thereby affecting the interaction with the host-cell receptors and preventing virus cell entry. Hence, inhibition of these proteases could be a promising strategy for treatment against SARSCoV- 2. In this review, we discuss the current state of the art of developing inhibitors against the entry proteases furin, the transmembrane serine protease type-II (TMPRSS2), trypsin, and cathepsin L.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Humanos , Serina Proteasas , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda