Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Vet Res ; 54(1): 113, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012694

RESUMEN

Previous studies showed that Trichinella spiralis galectin (Tsgal) facilitates larval invasion of intestinal epithelium cells (IECs). However, IEC proteins binding with Tsgal were not identified, and the mechanism by which Tsgal promotes larval invasion is not clear. Toll-like receptors (TLRs) are protein receptors responsible for recognition of pathogens. The aim of this study was to investigate whether recombinant Tsgal (rTsgal) binds to TLR-4, activates inflammatory pathway in gut epithelium and mediates T. spiralis invasion. Indirect immunofluorescence (IIF), GST pull-down and co-immunoprecipitation (Co-IP) assays confirmed specific binding between rTsgal and TLR-4 in Caco-2 cells. qPCR and Western blotting showed that binding of rTsgal with TLR-4 up-regulated the TLR-4 transcription and expression in Caco-2 cells, and activated p-NF-κB p65 and p-ERK1/2. Activation of inflammatory pathway TLR-4/MAPK-NF-κB by rTsgal up-regulated pro-inflammatory cytokines (IL-1ß and IL-6) and down-regulated anti-inflammatory cytokine TGF-ß in Caco-2 cells, and induced intestinal inflammation. TAK-242 (TLR-4 inhibitor) and PDTC (NF-κB inhibitor) significantly inhibited the activation of TLR-4 and MAPK-NF-κB pathway. Moreover, the two inhibitors also inhibited IL-1ß and IL-6 expression, and increased TGF-ß expression in Caco-2 cells. In T. spiralis infected mice, the two inhibitors also inhibited the activation of TLR-4/MAPK-NF-κB pathway, ameliorated intestinal inflammation, impeded larval invasion of gut mucosa and reduced intestinal adult burdens. The results showed that rTsgal binding to TLR-4 in gut epithelium activated MAPK-NF-κB signaling pathway, induced the expression of TLR-4 and pro-inflammatory cytokines, and mediated larval invasion. Tsgal might be regarded as a candidate molecular target of vaccine against T. spiralis enteral invasive stage.


Asunto(s)
Trichinella spiralis , Ratones , Animales , Humanos , Trichinella spiralis/fisiología , Receptor Toll-Like 4/genética , FN-kappa B/metabolismo , Células CACO-2 , Larva/fisiología , Galectinas , Interleucina-6 , Mucosa Intestinal/metabolismo , Citocinas/metabolismo , Inflamación/veterinaria , Factor de Crecimiento Transformador beta
2.
Vet Res ; 54(1): 86, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37784173

RESUMEN

C-type lectin (CTL) is a protein that binds to saccharides and plays an important role in parasite adhesion, host cell invasion and immune evasion. Previous studies showed that recombinant T. spiralis C-type lectin (rTsCTL) promotes larval invasion of intestinal epithelium cells (IEC), whereas anti-rTsCTL antibodies inhibits larval invasion. Syndecan-1 (SDC-1) is a member of the heparan sulfate proteoglycan family which is mainly expressed on the surface of IEC and in extracellular matrices where they interact with a plethora of ligands. SDC-1 has a principal role in maintaining cell morphogenesis, establishing cell-cell adhesions, and regulating the gut mucosal barrier. The aim of this study was to investigate whether rTsCTL binds to SDC-1 on IEC, and the binding of rTsCTL with SDC-1 promotes larval invasion and its mechanism. IFA results show that rTsCTL and SDC-1 co-localized on Caco-2 cell membrane. GST pull-down and Co-IP verified the direct interaction between rTsCTL and SDC-1 on Caco-2 cells. qPCR and Western blotting revealed that rTsCTL binding to SDC-1 increased the expression of SDC-1 and claudin-2, and reduced the expression of occludin and claudin-1 in Caco-2 cells incubated with rTsCTL via the STAT3 pathway. ß-Xyloside (a syndecan-1 synthesis inhibitor) and Stattic (a STAT3 inhibitor) significantly inhibited rTsCTL binding to syndecan-1 in Caco-2 cells and activation of the STAT3 pathway, abrogated the effects of rTsCTL on the expression of gut tight junctions, and impeded larval invasion. The results demonstrate that binding of rTsCTL to SDC-1 on Caco-2 cells activated the STAT3 pathway, decreased gut tight junction expression, damaged the integrity of the gut epithelial barrier, and mediated T. spiralis invasion of the gut mucosa. TsCTL might be regarded as a candidate vaccine target against T. spiralis invasion and infection.


Asunto(s)
Trichinella spiralis , Triquinelosis , Animales , Ratones , Humanos , Trichinella spiralis/fisiología , Triquinelosis/parasitología , Triquinelosis/veterinaria , Larva/fisiología , Células CACO-2 , Sindecano-1/genética , Sindecano-1/metabolismo , Mucosa Intestinal/metabolismo , Células Epiteliales/metabolismo , Ratones Endogámicos BALB C
3.
Vet Res ; 53(1): 19, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35255974

RESUMEN

The intestinal epithelium is the first natural barrier against Trichinella spiralis larval invasion, but the mechanism of larval invasion of the gut epithelium is not fully elucidated. The aim of this study was to investigate whether the excretory/secretory proteins (ESPs) of T. spiralis intestinal infective larvae (IIL) degrade tight junction (TJ) proteins, to assess the main ESP proteases hydrolysing TJ proteins using various enzyme inhibitors and to define the key invasive factors in IIL invasion of the gut epithelium. The results of immunofluorescence, Western blot and Transwell assays showed that serine proteases and cysteine proteases in the ESPs played main roles in hydrolysing occludin, claudin-1 and E-cad and upregulating claudin-2 expression. Challenge infection results showed that IIL expulsion from the gut at 12 hpi was significantly higher in mice which were infected with muscle larvae (ML) treated with a single inhibitor (PMSF, E-64, 1,10-Phe or pepstatin) or various mixtures containing PMSF and E-64 than in mice in the PBS group or the groups treated with an inhibitor mixture not containing PMSF and E-64 (P < 0.0001). At 6 days post-infection, mice which were infected with ML treated with PMSF, E-64, 1,10-Phe or pepstatin exhibited 56.30, 64.91, 26.42 and 31.85% reductions in intestinal adult worms compared to mice in the PBS group (P < 0.0001). The results indicate that serine proteases and cysteine proteases play key roles in T. spiralis IIL invasion, growth and survival in the host and that they may be main candidate target molecules for vaccines against larval invasion and development.


Asunto(s)
Enfermedades de los Roedores , Trichinella spiralis , Triquinelosis , Animales , Células Epiteliales/metabolismo , Proteínas del Helminto/metabolismo , Larva , Ratones , Ratones Endogámicos BALB C , Serina Proteasas , Trichinella spiralis/fisiología , Triquinelosis/veterinaria
4.
Exp Parasitol ; 242: 108376, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36089006

RESUMEN

Aminopeptidases P are metalloproteases belonging to the M24 peptidase family. It specifically hydrolyzes the N-terminus of polypeptides free of acidic amino acids, and plays an important role in the nutrition, metabolism and growth of parasites. The aim of this study was to characterize a novel Trichinella spiralis aminopeptidase P (TsAPP) and to investigate its functions in the invasion of T. spiralis. TsAPP contained two domains of creatinase (a creatinase N and creatinase N2) and a domain of peptidase M24C and APP. The complete TsAPP sequence was cloned and expressed in Escherichia coli BL21 cells. The recombinantly produced TsAPP was used to raise polyclonal antibodies that were subsequently used to detect the expression of the protein in the different life stages of T. spiralis. TsAPP was expressed in various T. spiralis stages. TsAPP was primarily localized in the cuticle, stichosome and intrauterine embryos of this nematode. rTsAPP has an enzymatic activity of a natural aminopeptidase P to hydrolyze the substrate H-Ala-Pro-OH. rTsAPP promoted the larval intrusion of intestinal epithelium cells (IECs). The results showed that TsAPP is involved in the T. spiralis intrusion of IECs and it might be a potential candidate vaccine target against Trichinella infection.


Asunto(s)
Trichinella spiralis , Triquinelosis , Vacunas , Ratones , Animales , Proteínas del Helminto , Ratones Endogámicos BALB C , Triquinelosis/parasitología , Aminopeptidasas/genética , Aminopeptidasas/metabolismo , Células Epiteliales/parasitología , Larva
5.
Arch Gynecol Obstet ; 305(3): 737-747, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34417839

RESUMEN

PURPOSE: The relationship between transforming growth factor ß superfamily members (GDF11 and BMP4) and bone metabolism remains controversial. The aim of this study was to investigate the association between serum GDF11 and BMP4 levels and lumbar spine bone mineral density (LBMD) in a cohort of postmenopausal Chinese women. METHODS: This was a non-prospective cross-sectional study of 350 postmenopausal women with a mean age of 63.13 ± 8.66 years who came from Shenyang, China. LBMD was measured using dual-energy X-ray absorptiometry. Serum GDF11 and BMP4 concentrations were detected using a sandwich enzyme immunoassay kit. Pearson's correlation analysis and regression analyses were carried out to investigate the relationships between LBMD and serum GDF11 and BMP4 levels. RESULTS: A linear association between LBMD and serum LgGDF11 concentration was observed after adjusting for numerous confounders (P = 0.018). In addition, the osteoporosis (OP) was inversely related to LgGDF11 and the odds ratios for postmenopausal women with lumbar OP in LgGDF11 quartile group 2, group 3, and group 4 were 0.46 (95% CI 0.23-0.90, P < 0.05), 0.41 (95% CI 0.20-0.84, P < 0.05), and 0.30 (95% CI 0.14-0.63, P < 0.01), respectively (P = 0.001 for the trend), when compared to the highest quartile of LgGDF11 after adjustments for many confounding variables in this study. CONCLUSIONS: This study showed that serum GDF11 levels were linearly related to LBMD, and it was also revealed that serum GDF11 levels were significantly associated with lumbar OP in postmenopausal women. However, serum BMP4 levels were not associated with LBMD and lumbar OP.


Asunto(s)
Densidad Ósea , Osteoporosis Posmenopáusica , Absorciometría de Fotón , Anciano , Proteína Morfogenética Ósea 4 , Proteínas Morfogenéticas Óseas , Estudios Transversales , Femenino , Factores de Diferenciación de Crecimiento , Humanos , Vértebras Lumbares/diagnóstico por imagen , Persona de Mediana Edad , Posmenopausia , Factor de Crecimiento Transformador beta
6.
Angew Chem Int Ed Engl ; 61(46): e202211922, 2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36165575

RESUMEN

Although palladium-catalyzed asymmetric C-H functionalization and Heck reactions represents one of the most important synthetic strategies for the construction of quaternary stereocenters, developing the enantioselective version of PdII -catalyzed carbopalladation-initiated cascade reactions still remains a formidable challenge. Herein, an unprecedent enantioselective [3+2] annulation of oxime ethers and alkynes has been developed, providing both spiro and nonspiro indenes bearing all-carbon quaternary stereocenters in good yields (up to 98 %) with excellent enantioselectivities (up to >99 % ee). This annulation is accomplished by merging the PdII -catalyzed atroposelective C-H activation/double carbopalladation and the transient axial-to-central chirality transfer process, constituting the first successful example of catalytic chirality transfer strategy involving axially chiral styrene intermediate.

7.
Chemistry ; 27(13): 4336-4340, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33481303

RESUMEN

Although asymmetric C-H functionalization has been available for the synthesis of structurally diverse molecules, catalytic dynamic kinetic resolution (DKR) approaches to change racemic stereogenic axes remain synthetic challenges in this field. Here, a concise palladium-catalyzed DKR was combined with C-H functionalization involving olefination and alkynylation for the highly efficient synthesis of non-biaryl-atropisomer-type (NBA) axially chiral oragnosilanes. The chemistry proceeded through two different and distinct DKR: first, an atroposelective C-H olefination or alkynylation produced axially chiral vinylsilanes or alkynylsilanes as a new family of non-biaryl atropisomers (NBA), and second, the extension of this DKR strategy to twofold o,o'-C-H functionalization led to the multifunctional axially chiral organosilicon compounds with up to >99 % ee.

8.
Parasitology ; 146(7): 947-955, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30859932

RESUMEN

The plerocercoid (sparganum) of Spirometra erinaceieuropaei is the main aetiological agent of human sparganosis. To improve the current knowledge on S. erinaceieuropaei evolution, we performed multi-locus microsatellite typing of sparganum isolates from China for the first time. All available expressed sequence tag (EST) sequences for the Spirometra were downloaded from the GenBank. The identification and localization of microsatellites in ESTs was accomplished by MISA. Based on the selected microsatellites, the genetic structure of 64 sparganum isolates collected from 11 geographical locations in southwest China were investigated through principal component analysis, STRUCTURE analysis and neighbour-joining clustering. A total of 522 non-redundant ESTs containing 915 simple sequence repeats were identified from 12 481 ESTs screened. Five primer pairs were finally selected. Using these loci, a total of 12 alleles were detected in 64 sparganum isolates. Little variability was observed within each of geographical population, especially among isolates derived from Kunming of Yunnan (YN-KM) province. Both STRUCTURE analysis and the clustering analysis supported that two genotypes existed among the sparganum isolates from southwest China. In conclusion, five microsatellite markers were successfully developed, and sparganum population was observed to harbour low genetic variation, further investigation with deeper sampling was needed to elucidate the population structure.


Asunto(s)
Etiquetas de Secuencia Expresada , Genética de Población , Repeticiones de Microsatélite , Plerocercoide/genética , Alelos , Animales , Anuros/parasitología , China , Marcadores Genéticos , Variación Genética , Genotipo , Filogenia , Serpientes/parasitología , Esparganosis
9.
Cardiology ; 140(1): 1-7, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29635255

RESUMEN

PURPOSE: To explore the relationship between central blood pressure (BP) parameters and cardiac structure and function parameters in healthy individuals. METHODS: Four hundred Chinese participants with no overt cardiovascular disease participated in this study. One hundred and seventy-one participants (42.8%) were male and the mean age was 60 years. Central BP was measured with the SphygmoCor system. Cardiac structure and function were assessed by echocardiography. RESULTS: We showed a significant association of left atrial volume and left ventricular mass index (LVMI) with brachial and central systolic BP (SBP) and pulse pressure (PP; r = 0.189-0.0.39, p < 0.001). Left ventricular diastolic function and the E/A ratio were significantly associated with brachial and central BP (r = 0.228-0.469, p < 0.001). Multivariate regression analysis revealed that central SBP and PP were independently correlated with LVMI after normalization for age and other confounding variables (sex, body mass index, smoking, and alcohol intake, and the levels of triglycerides, high-density lipoprotein, low-density lipoprotein, creatinine, uric acid, fasting blood glucose, log C-reactive protein, and fibrinogen. However, only central SBP was found to be independently correlated with the E/A ratio. CONCLUSIONS: Cardiac structure and diastolic function were associated with brachial and central BP. However, after normalization, cardiac structure parameters were independently correlated with central SBP and PP. Diastolic function was the only cardiac function parameter that correlated with central SBP.


Asunto(s)
Presión Sanguínea/fisiología , Corazón/anatomía & histología , Corazón/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Pueblo Asiatico , China , Diástole/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Análisis de Regresión
10.
Lipids Health Dis ; 17(1): 186, 2018 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-30111317

RESUMEN

The extensive performance of splenectomy worldwide for patients suffered from splenic trauma has given rise to high risks of postoperative complications, which has been attracting increasing attention in recent years. Nowadays the spleen is regarded as a versatile organ of the human body, invested with various excellent properties. The spleen has been recognized to take a great part in lipid metabolism. While removal of the spleen intends to alter lipid values, especially with an elevated LDL, splenic autotransplantation is able to normalize these lipid alterations. What is more, conservative surgical procedures like subtotal or partial splenectomy, could as well, afford a correction of dyslipidemia. At the same time, clinically, splenectomy demonstrates a high rate of atherosclerosis (AS), whereas non-surgical treatment after splenic trauma shows unchanged propagation of AS. Based on the intimate relationship between serum lipids and AS, the lipid changes modulated by splenectomy are believed to be responsible for the development of AS. Therefore, a "splenic factor" is most likely present in the regulation of lipidation and AS. Several theories have been postulated to elucidate the possible mechanism involved, among which most are primarily based on its forceful natural immune function, that is to say, the mononuclear phagocytic system.However, the accurate mechanisms behind this mysterious phenomenon still remain unclear so far. Of importance, lipid fractions should be monitored consecutively in case of inevitable splenectomy.


Asunto(s)
Aterosclerosis/metabolismo , Metabolismo de los Lípidos , Bazo/metabolismo , Bazo/cirugía , Esplenectomía , Aterosclerosis/sangre , Aterosclerosis/genética , Humanos , Lípidos/sangre , MicroARNs/genética , MicroARNs/metabolismo
11.
Inorg Chem ; 54(10): 4737-43, 2015 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-25941881

RESUMEN

Three Cu(I) coordination networks, namely, {[Cu2(bpz)2(CN)X]·CH3CN}n, (X = Cl, 1; I, 3), {[Cu6(bpz)6(CH3CN)3(CN)3Br]·2OH·14CH3CN}n, (2, bpz = 3,3',5,5'-tetramethyl-4,4'-bipyrazole), were prepared by using solvothermal method. The cyanide ligands in these networks were generated in situ by cleavage of C-C bond of MeCN under solvothermal condition. The structures of these networks are dependent on halogen anions. Complex 1 is a ladderlike structure with µ2-CN(-) as rung and µ2-bpz as armrest. The Cl(-) in 1 is at terminal position but does not extend the one-dimensional (1D) ladder to higher dimensionalities. Complex 2 is a three-dimensional (3D) framework comprised of novel planar [Cu3Br] triangle and single Cu nodes, which are extended by µ2-bpz and µ2-CN(-) to form a novel (3,9)-connected gfy network. Density functional theory calculations showed that single-electron delocalization of Br atom induces the plane structure of [Cu3Br]. Complex 3 also possesses a similar ladderlike subunit as in 1, but the I(-) acts as bidentate bridge to extend the ladder to 3D framework with a four-connected sra topology. The three networks show notable catalytic activity on the click reaction. The compared catalytic results demonstrate that complex 2 possesses the best catalysis performance among three complexes, which is ascribed to the largest solvent-accessible void (porosity: 2 (29.4%) > 1 (25.7%) > 3 (17.6%)) and the more Cu(I) active sites in 2. The present combined structure-property studies provide not only a new synthetic route to obtain a new kind of catalyst for click reaction but also the new insights on catalyst structure-function relationships.

12.
World J Diabetes ; 15(1): 92-104, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38313849

RESUMEN

BACKGROUND: Diabetic kidney disease (DKD), characterized by increased urinary microalbumin levels and decreased renal function, is the primary cause of end-stage renal disease. Its pathological mechanisms are complicated and multifactorial; Therefore, sensitive and specific biomarkers are needed. Urinary exosome originate from diverse renal cells in nephron segments and partially mirror the pathological changes in the kidney. The microRNAs (miRNAs) in urinary exosome are remarkably stable and highly tissue-specific for the kidney. AIM: To determine if urinary exosomal miRNAs from diabetic patients can serve as noninvasive biomarkers for early DKD diagnosis. METHODS: Type 2 diabetic mellitus (T2DM) patients were recruited from the Second Hospital of Hebei Medical University and were divided into two groups: DM, diabetic patients without albuminuria [urinary albumin to creatinine ratio (UACR) < 30 mg/g] and DKD, diabetic patients with albuminuria (UACR ≥ 30 mg/g). Healthy subjects were the normal control (NC) group. Urinary exosomal miR-145-5p, miR-27a-3p, and miR-29c-3p, were detected using real-time quantitative polymerase chain reaction. The correlation between exosomal miRNAs and the clinical indexes was evaluated. The diagnostic values of exosomal miR-145-5p and miR-27a-3p in DKD were determined using receiver operating characteristic (ROC) analysis. Biological functions of miR-145-5p were investigated by performing Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment. RESULTS: Urinary exosomal expression of miR-145-5p and miR-27a-3p was more upregulated in the DKD group than in the DM group (miR-145-5p: 4.54 ± 1.45 vs 1.95 ± 0.93, P < 0.001; miR-27a-3p: 2.33 ± 0.79 vs 1.71 ± 0.76, P < 0.05) and the NC group (miR-145-5p: 4.54 ± 1.45 vs 1.55 ± 0.83, P < 0.001; miR-27a-3p: 2.33 ± 0.79 vs 1.10 ± 0.51, P < 0.001). The exosomal miR-145-5p and miR-27a-3p positively correlated with albuminuria and serum creatinine and negatively correlated with the estimated glomerular filtration rate. miR-27a-3p was also closely related to blood glucose, glycosylated hemoglobin A1c, and low-density lipoprotein cholesterol. ROC analysis revealed that miR-145-5p had a better area under the curve of 0.88 [95% confidence interval (CI): 0.784-0.985, P < 0.0001] in diagnosing DKD than miR-27a-3p with 0.71 (95%CI: 0.547-0.871, P = 0.0239). Bioinformatics analysis revealed that the target genes of miR-145-5p were located in the actin filament, cytoskeleton, and extracellular exosome and were involved in the pathological processes of DKD, including apoptosis, inflammation, and fibrosis. CONCLUSION: Urinary exosomal miR-145-5p and miR-27a-3p may serve as novel noninvasive diagnostic biomarkers or promising therapeutic targets for DKD.

13.
J Integr Med ; 22(1): 83-92, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38311542

RESUMEN

OBJECTIVE: Obesity is a global health concern with management strategies encompassing bariatric surgery and anti-obesity drugs; however, concerns regarding complexities and side effects persist, driving research for more effective, low-risk strategies. The promotion of white adipose tissue (WAT) browning has emerged as a promising approach. Moreover, alisol B 23-acetate (AB23A) has demonstrated efficacy in addressing metabolic disorders, suggesting its potential as a therapeutic agent in obesity management. Therefore, in this study, we aimed to investigate the therapeutic potential of AB23A for mitigating obesity by regulating metabolic phenotypes and lipid distribution in mice fed a high-fat diet (HFD). METHODS: An obesity mouse model was established by administration of an HFD. Glucose and insulin metabolism were assessed via glucose and insulin tolerance tests. Adipocyte size was determined using hematoxylin and eosin staining. The expression of browning markers in WAT was evaluated using Western blotting and quantitative real-time polymerase chain reaction. Metabolic cage monitoring involved the assessment of various parameters, including food and water intake, energy metabolism, respiratory exchange rates, and physical activity. Moreover, oil red O staining was used to evaluate intracellular lipid accumulation. A bioinformatic analysis tool for identifying the molecular mechanisms of traditional Chinese medicine was used to examine AB23A targets and associated signaling pathways. RESULTS: AB23A administration significantly reduced the weight of obese mice, decreased the mass of inguinal WAT, epididymal WAT, and perirenal adipose tissue, improved glucose and insulin metabolism, and reduced adipocyte size. Moreover, treatment with AB23A promoted the expression of browning markers in WAT, enhanced overall energy metabolism in mice, and had no discernible effect on food intake, water consumption, or physical activity. In 3T3-L1 cells, AB23A inhibited lipid accumulation, and both AB23A and rapamycin inhibited the mammalian target of rapamycin-sterol regulatory element-binding protein-1 (mTOR-SREBP1) signaling pathway. Furthermore, 3-isobutyl-1-methylxanthine, dexamethasone and insulin, at concentrations of 0.25 mmol/L, 0.25 µmol/L and 1 µg/mL, respectively, induced activation of the mTOR-SREBP1 signaling pathway, which was further strengthened by an mTOR activator MHY1485. Notably, MHY1485 reversed the beneficial effects of AB23A in 3T3-L1 cells. CONCLUSION: AB23A promoted WAT browning by inhibiting the mTOR-SREBP1 signaling pathway, offering a potential strategy to prevent obesity. Please cite this article as: Han LL, Zhang X, Zhang H, Li T, Zhao YC, Tian MH, Sun FL, Feng B. Alisol B 23-acetate promotes white adipose tissue browning to mitigate high-fat diet-induced obesity by regulating mTOR-SREBP1 signaling. J Integr Med. 2024; 22(1): 83-92.


Asunto(s)
Colestenonas , Dieta Alta en Grasa , Obesidad , Ratones , Animales , Dieta Alta en Grasa/efectos adversos , Obesidad/tratamiento farmacológico , Tejido Adiposo Blanco/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Transducción de Señal , Glucosa/metabolismo , Insulina/farmacología , Lípidos/farmacología , Lípidos/uso terapéutico , Mamíferos/metabolismo
14.
Parasit Vectors ; 17(1): 9, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38178167

RESUMEN

BACKGROUND: The excretory/secretory (ES) antigen of Trichinella spiralis muscle larvae (ML) is currently the most widely used diagnostic antigen to detect T. spiralis infection. However, this antigen has certain drawbacks, such as a complicated ES antigen preparation process and lower sensitivity during the early phase of infection. The aim of this study was to investigate the features of a novel T. spiralis trypsin (TsTryp) and evaluate its potential diagnostic value for trichinellosis. METHODS: The TsTryp gene was cloned and recombinant TsTryp (rTsTryp) expressed. Western blotting and an enzyme-linked immunosorbent assay (ELISA) were performed to confirm the antigenicity of rTsTryp. The expression pattern and distribution signature of TsTryp at various life-cycle stages of T. spiralis were analyzed by quantitative PCR, western blotting and the immunofluorescence test. An ELISA with rTsTryp and ML ES antigens was used to detect immunoglobulins G and M (IgG, IgM) in serum samples of infected mice, swine and humans. The seropositive results were further confirmed by western blot with rTsTryp and ML ES antigens. RESULTS: TsTryp expression was observed in diverse T. spiralis life-cycle phases, with particularly high expression in the early developmental phase (intestinal infectious larvae and adults), with distribution observed mainly at the nematode outer cuticle and stichosome. rTsTryp was identified by T. spiralis-infected mouse sera and anti-rTsTryp sera. Natural TsTryp protease was detected in somatic soluble and ES antigens of the nematode. In mice infected with 200 T. spiralis ML, serum-specific IgG was first detected by rTsTryp-ELISA at 8 days post-infection (dpi), reaching 100% positivity at 12 dpi, and first detected by ES-ELISA at 10 dpi, reaching 100% positivity at 14 dpi. Specific IgG was detected by rTsTryp 2 days earlier than by ES antigens. When specific IgG was determined in serum samples from trichinellosis patients, the sensitivity of rTsTryp-ELISA and ES antigens-ELISA was 98.1% (51/52 samples) and 94.2% (49/52 samples), respectively (P = 0.308), but the specificity of rTsTryp was significantly higher than that of ES antigens (98.7% vs. 95.4%; P = 0.030). Additionally, rTsTryp conferred a lower cross-reaction, with only three serum samples in total testing positive from 11 clonorchiasis, 20 cysticercosis and 24 echinococcosis patients (1 sample from each patient group). CONCLUSIONS: TsTryp was shown to be an early and highly expressed antigen at intestinal T. spiralis stages, indicating that rTsTryp represents a valuable diagnostic antigen for the serodiagnosis of early Trichinella infection.


Asunto(s)
Trichinella spiralis , Triquinelosis , Adulto , Humanos , Porcinos , Ratones , Animales , Triquinelosis/diagnóstico , Tripsina , Antígenos Helmínticos , Proteínas del Helminto , Ensayo de Inmunoadsorción Enzimática/métodos , Larva/fisiología , Estadios del Ciclo de Vida , Pruebas Serológicas , Inmunoglobulina G , Anticuerpos Antihelmínticos
15.
PLoS Negl Trop Dis ; 18(1): e0011874, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38166153

RESUMEN

BACKGROUND: Proteases secreted by Trichinella spiralis intestinal infective larvae (IIL) play an important role in larval invasion and pathogenesis. However, the mechanism through which proteases mediate larval invasion of intestinal epithelial cells (IECs) remains unclear. A novel T. spiralis trypsin (TsTryp) was identified in IIL excretory/secretory (ES) proteins. It was an early and highly expressed protease at IIL stage, and had the potential as an early diagnostic antigen. The aim of this study was to investigate the biological characteristics of this novel TsTryp, its role in larval invasion of gut epithelium, and the mechanisms involved. METHODOLOGY/PRINCIPAL FINDING: TsTryp with C-terminal domain was cloned and expressed in Escherichia coli BL21 (DE3), and the rTsTryp had the enzymatic activity of natural trypsin, but it could not directly degrade gut tight junctions (TJs) proteins. qPCR and western blotting showed that TsTryp was highly expressed at the invasive IIL stage. Immunofluorescence assay (IFA), ELISA and Far Western blotting revealed that rTsTryp specifically bound to IECs, and confocal microscopy showed that the binding of rTsTryp with IECs was mainly localized in the cytomembrane. Co-immunoprecipitation (Co-IP) confirmed that rTsTryp bound to protease activated receptors 2 (PAR2) in Caco-2 cells. rTsTryp binding to PAR2 resulted in decreased expression levels of ZO-1 and occludin and increased paracellular permeability in Caco-2 monolayers by activating the extracellular regulated protein kinases 1/2 (ERK1/2) pathway. rTsTryp decreased TJs expression and increased epithelial permeability, which could be abrogated by the PAR2 antagonist AZ3451 and ERK1/2 inhibitor PD98059. rTsTryp facilitated larval invasion of IECs, and anti-rTsTryp antibodies inhibited invasion. Both inhibitors impeded larval invasion and alleviated intestinal inflammation in vitro and in vivo. CONCLUSIONS: TsTryp binding to PAR2 activated the ERK1/2 pathway, decreased the expression of gut TJs proteins, disrupted epithelial integrity and barrier function, and consequently mediated larval invasion of the gut mucosa. Therefore, rTsTryp could be regarded as a potential vaccine target for blocking T. spiralis invasion and infection.


Asunto(s)
Receptor PAR-2 , Trichinella spiralis , Triquinelosis , Animales , Humanos , Ratones , Células CACO-2 , Epitelio/metabolismo , Proteínas del Helminto/metabolismo , Larva/fisiología , Sistema de Señalización de MAP Quinasas , Ratones Endogámicos BALB C , Proteínas Quinasas , Trichinella spiralis/metabolismo , Trichinella spiralis/patogenicidad , Triquinelosis/genética , Triquinelosis/metabolismo , Tripsina/metabolismo , Receptor PAR-2/metabolismo
16.
Res Vet Sci ; 165: 105075, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37931574

RESUMEN

Previous studies showed that recombinant Trichinella spiralis galectin (rTsgal) promoted larval invasion of gut epithelial cells, while anti-rTsgal antibodies inhibited the invasion. Galactomannan (GM) is a polysaccharide capable of regulating immune response. The aim of this study was to evaluate protective immunity induced by rTsgal immunization and the potential of GM as a novel adjuvant. The results showed that vaccination of mice with rTsgal+ISA201 and rTsgal+GM elicited a Th1/Th2 immune response. Mice immunized with rTsgal+ISA201 and rTsgal+GM exhibited significantly higher levels of serum anti-rTsgal antibodies, mucosal sIgA and cellular immune responses, but level of specific antibodies and cytokines of rTsgal+GM group was lower than the rTsgal+ISA201 group. Immunization of mice with rTsgal+ISA201 and rTsgal+GM showed a 50.5 and 40.16% reduction of intestinal adults, and 52.04 and 37.53% reduction of muscle larvae after challenge. Moreover, the numbers of goblet cells and expression level of mucin 2, Muc5ac and pro-inflammatory cytokines (TNF-α and IL-1ß) in gut tissues of vaccinated mice were obviously decreased, while Th2 inducing cytokine (IL-4) expression was evidently increased. Galactomannan enhanced protective immunity, alleviated intestinal and muscle inflammation of infected mice. The results indicated that rTsgal+ISA201 vaccination induced a more prominent gut local as well as systemic immune response and protection compared to rTsgal+GM vaccination. The results suggested that Tsgal could be considered as a candidate vaccine target against Trichinella infection and galactomannan might be a potential novel candidate adjuvant of anti-Trichinella vaccines.


Asunto(s)
Trichinella spiralis , Triquinelosis , Vacunas , Animales , Ratones , Larva , Galectinas , Triquinelosis/prevención & control , Triquinelosis/veterinaria , Adyuvantes Inmunológicos , Citocinas , Ratones Endogámicos BALB C , Anticuerpos Antihelmínticos
17.
PLoS Negl Trop Dis ; 16(11): e0010929, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36445875

RESUMEN

BACKGROUND: Trichinella spiralis is a foodborne parasitic nematode which is a serious risk to meat safety. Development of anti-Trichinella vaccine is needed to control Trichinella infection in food animals. In this study, two novel T. spiralis genes (calreticulin and serine protease 1.1) in combination were used to construct oral DNA vaccines, and their induced protective immunity was evaluated in a murine model. METHODOLOGY/PRINCIPAL FINDINGS: TsCRT+TsSP1.1, TsCRT and TsSP1.1 DNA were transformed into attenuated Salmonella typhimurium ΔcyaSL1344. Oral vaccination of mice with TsCRT+TsSP1.1, TsCRT and TsSP1.1 DNA vaccines elicited a gut local mucosal sIgA response and systemic Th1/Th2 mixed response. Oral vaccination with TsCRT+TsSP1.1 induced obviously higher level of serum specific antibodies, mucosal sIgA and cellular immune response than either of single TsCRT or TsSP1.1 DNA vaccination. Oral vaccination of mice with TsCRT+TsSP1.1 exhibited a 53.4% reduction of enteral adult worms and a 46.05% reduction of muscle larvae, conferred a higher immune protection than either of individual TsCRT (44.28 and 42.46%) or TsSP1.1 DNA vaccine (35.43 and 29.29%) alone. Oral vaccination with TsCRT+TsSP1.1, TsCRT and TsSP1.1 also obviously ameliorated inflammation of intestinal mucosa and skeletal muscles of vaccinated mice after challenge. CONCLUSIONS: TsCRT and TsSP1.1 might be regarded the novel potential targets for anti-Trichinella vaccines. Attenuated Salmonella-delivered DNA vaccine provided a prospective approach to control T. spiralis infection in food animals.


Asunto(s)
Trichinella spiralis , Triquinelosis , Vacunas de ADN , Animales , Ratones , Calreticulina , Inmunoglobulina A Secretora , Ratones Endogámicos BALB C , Salmonella typhimurium/genética , Trichinella spiralis/genética , Vacunación , Vacunas Atenuadas/genética , Vacunas de ADN/genética , Triquinelosis/inmunología , Triquinelosis/prevención & control , Serina Endopeptidasas
18.
Eur J Clin Invest ; 41(10): 1077-86, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21413979

RESUMEN

BACKGROUND: Age-related changes in kidney structure and function have been well documented. This study aimed to assess the relationship between declines of normal ageing-related kidney function and cardiac diastolic function in a healthy Chinese population. MATERIALS AND METHODS: A total of 852 healthy adults aged 30-98 years were enrolled and divided into four groups according to quartiles of estimated glomerular filtration rate (eGFR) and cystatin C (CYSC). Cardiac diastolic function was measured by ratio of peak velocity of early filling to peak velocity of atrial filling (E/A), which was derived by B-mode echocardiography. Lower E/A was defined as measures under the 25th percentile of sample distribution (0·784). RESULTS: Age was significantly associated with eGFR (r = -0·102, P < 0·01), CYSC (r = 0·544, P < 0·01) and E/A (r = -0·381, P < 0·01). Binary logistic regression analysis revealed that second, third and fourth quartile groups of CYSC and fourth quartile of eGFR were significantly associated with lower E/A in an unadjusted model. However, these associations were lost after full adjustment. CONCLUSIONS: Our results confirm that ageing is a major factor contributing to declines in both kidney and cardiac diastolic function in a healthy population. Adjustment for covariates, however, showed that normal ageing-related declines in kidney function and cardiac diastolic function are not independently linked.


Asunto(s)
Envejecimiento/fisiología , Cistatina C/metabolismo , Tasa de Filtración Glomerular/fisiología , Riñón/fisiología , Función Ventricular Izquierda/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Pueblo Asiatico , Biomarcadores/metabolismo , Estudios de Cohortes , Diástole/fisiología , Ecocardiografía , Femenino , Humanos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Estudios Prospectivos
19.
Zhonghua Yi Xue Za Zhi ; 91(10): 669-73, 2011 Mar 15.
Artículo en Zh | MEDLINE | ID: mdl-21600172

RESUMEN

OBJECTIVE: To estimate the degree of biological aging for healthy people by the biological age score equation and observe the differences of various aging biomarkers so as to provide targets for clinical anti-aging intervention. METHODS: A total of 2876 subjects aged 30 - 98 years old were recruited from 3 Chinese cities in 2003. After screening, 852 healthy subjects were finally selected and assigned into 4 groups according to ages: young group (< 45 yr), middle-aged group (45 - 59 yr), young-elder group (60 - 74 yr) and elder group (≥ 75 yr). They received a total of 108 physical, morphological, physiologic and biochemical examinations. The biological age score equation was employed to compute the individual biological age scores for all subjects. Then the biological age score was taken as a dependent variable and the chronological age as an independent variable for linear regression. Based on the confidence interval with ± 1 standard deviation of regression line, they were divided into 3 groups (delayed aging, normal aging and early aging). According to the chronological ages and degrees of aging, two-way analysis of variance was conducted for the following 7 biomarkers: end diastolic velocity (EDV), intima-media thickness (IMT), ratio of peak velocity of early filling to atrial filling (E/A), mitral valve annulus lateral wall of peak velocity of early filling (MVEL), arterial pulse pressure (PP), fibrinogen (FIB) and cystatin C (CYSC). At the same time, the differences of 7 biomarkers were observed in different aging groups in 4 age groups. RESULTS: (1) A comparison of biological age score: there were no significant differences in chronological age among 3 biological aging groups in same chronological age groups. However, there were some significant differences in biological age score (young group: F = 91.8, P < 0.01; middle-aged group: F = 134.5, P < 0.01; young-elder group: F = 199.5, P < 0.01; elder group: F = 82.1, P < 0.01). (2) Two-way analysis of variance (aging groups and chronological age groups for biomarkers): there were significant differences of 7 biomarkers in different chronological age groups and different aging groups. (3) A comparison of biomarkers among aging groups: there were significant differences in PP among 3 aging groups in 4 age groups. PP increased significantly in early aging group to normal aging group and delayed aging group (young group: 49.0 ± 6.9, 37.6 ± 6.4, 30.8 ± 7.6 mm Hg, F = 93.2, P < 0.01; middle-aged group: 52.9 ± 7.3, 44.3 ± 5.9, 32.7 ± 8.4 mm Hg, F = 125.7, P < 0.01; young-elder group: 61.9 ± 7.6, 51.6 ± 6.6, 37.1 ± 8.7 mm Hg, F = 196.5, P < 0.01; elder group: 72.2 ± 13.7, 61.1 ± 6.8, 43.8 ± 10.8 mm Hg, F = 60.2, P < 0.01). There were significant differences in EDV among 3 aging groups in 4 age groups. EDV increased significantly in early aging group to normal aging group and delayed aging group. There were significant changes in IMT, MVEL, E/A, CYSC and FIB among aging groups in different age groups. CONCLUSION: (1) Biological age score plays an essential role in the evaluation of aging. Based on individual evaluation of biological age score, the degrees of aging can be categorized by grouping so that a clinician may provide clinical anti-aging interventions within the target groups. (2) The above 7 biomarkers are competent for the evaluation of aging. They can not only be used to construct biological age score equation, but also provide clinical targeted interventions for aging.


Asunto(s)
Envejecimiento/fisiología , Biomarcadores , Adulto , Anciano , Anciano de 80 o más Años , Estudios Transversales , Humanos , Persona de Mediana Edad , Válvula Mitral , Valores de Referencia
20.
Int J Biol Macromol ; 192: 883-894, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34656542

RESUMEN

Trichinellosis is a serious food-borne zoonotic parasitic disease with global distribution, causing serious harm to public health and food safety. Molting is prerequisite for intestinal larval development in the life cycle of T. spiralis. Metalloproteinases play an important role in the molting process of T. spiralis intestinal infective larvae (IIL). In this study, the metalloproteinase Tsdpy31 was cloned, expressed and characterized. The results revealed that the Tsdpy31 was expressed at various T. spiralis stages and it was principally located in cuticle, hypodermis and embryos of the nematode. Recombinant Tsdpy31 (rTsdpy31) had the catalytic activity of natural metalloproteinase. Silencing of Tsdpy31 increased the permeability of larval new cuticle. When the mice were orally challenged with dsRNA treated- muscle larvae, the burden of intestinal adult and muscle larvae in Tsdpy31 dsRNA treatment group was significantly reduced, compared with the control green fluorescent protein (GFP) dsRNA and PBS groups (P < 0.05). Tsdpy31 may play a major role in the new cuticle synthesis and old cuticle shedding. Tsdpy31 also participates in T. spiralis embryonic development. We conclude that Tsdpy31 could be a candidate vaccine target molecule against intestinal T. spiralis ecdysis and development.


Asunto(s)
Metaloproteasas/química , Metaloproteasas/metabolismo , Metamorfosis Biológica , Muda , Trichinella spiralis/fisiología , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Biología Computacional/métodos , Activación Enzimática , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Proteínas del Helminto/química , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Larva , Metaloproteasas/genética , Muda/genética , Mutación , Filogenia , Conformación Proteica , Interferencia de ARN , Relación Estructura-Actividad , Trichinella spiralis/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda