Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Molecules ; 25(11)2020 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-32521617

RESUMEN

The aim of this study was to evaluate the influence of clarification treatments on volatile composition and aromatic attributes of wine samples. 'Italian Riesling' icewines from the Hexi Corridor Region of China were clarified by fining agents (bentonite (BT) and soybean protein (SP)), membrane filtration (MF), and centrifugation (CF) methods. The clarity, physicochemical indexes, volatile components, and aromatic attributes of treated wines were investigated. Both the fining agents and mechanical clarification treatments increased the transmittance and decreased the color intensity of icewine samples. Bentonite fining significantly influenced the total sugar content, total acidity and volatile acidity. Total acidity decreased 2-3.5% and volatile acidity 2-12%. MF showed the greatest influence on total phenol content, decreasing the initial content by 12%, while other treatments by less than 8%. Volatile analysis indicated that both the categories and contents of volatile compounds of wine samples decreased. MF treatment showed the most significant influence, while SP fining showed much lower impact. Odor activity values indicated the compound with the highest odor activity in Italian Riesling icewines was ß-damascenone. For this compound, BT and SP did not show significant differences, however, in MF and CF it decreased by 20% and 63%, respectively. Furthermore, with high impact on aroma were: ethyl hexanoate which reduced by 20-80% especially in MF; rose oxide which extremely reduced in MF and undetected in BT, SP, and CF; isoamyl acetate which reduced by 3-33% and linalool decreased by 10-20% and undetected for BT. Principle component analysis indicated that icewine clarified by different methods could be distinguished and positively correlated with odor-active compounds. Floral and fruity were the dominant aroma series in icewine samples followed by fatty, earthy, spicy, vegetative and pungent flavor. The total odor active value of these series significantly (p < 0.5) decreased in different clarification treatments. Sensory evaluation showed similar results, but the SP and CF wine samples achieved better sensory quality. This study provides information that could help to optimize the clarification of ice wines.


Asunto(s)
Monoterpenos/análisis , Odorantes/análisis , Olfato , Compuestos Orgánicos Volátiles/análisis , Vino/análisis , Cromatografía de Gases y Espectrometría de Masas , Humanos , Italia , Monoterpenos/aislamiento & purificación , Gusto , Compuestos Orgánicos Volátiles/aislamiento & purificación
2.
Food Microbiol ; 69: 51-63, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28941909

RESUMEN

Today, many non-Saccharomyces strains have been verified can be positive for the development of wine anthocyanin and aroma in different fermentation scenarios. Moreover, oenological tannins are widely used in wine industry to improve the colour profile and aroma complexity. The aim of this work is to analyze the fermentation characters of non-Saccharomyces strains and investigate the effects of pre-fermentative addition of oenological tannins on the wine components as well as sensory properties. For this purpose, five selected non-Saccharomyces strains and grape seed tannin were used to carry out the different fermentation trials. As a result, the grape seed tannin were less likely to influence growth kinetics of non-Saccharomyces strains. Schizosaccharomyces pombe has been proved can be effective to reduce the malic acid content while increase the level of vinylphenolic pyranoanthocyanin, which is positive for wine colour stability. Pre-fermentative use of oenological tannin was verified could be beneficial for the wines fermented with non-Saccharomyces regarding the improvement of wine colour, anthocyanin composition and the complexity of volatile compounds. Nevertheless, sensory analysis showed that oenological tannin could be less effective to modify the aroma impression of non-Saccharomyces wines.


Asunto(s)
Taninos/metabolismo , Vino/microbiología , Levaduras/aislamiento & purificación , Levaduras/metabolismo , Reactores Biológicos , Color , Femenino , Humanos , Cinética , Masculino , Taninos/química , Gusto , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/metabolismo , Vino/análisis , Levaduras/clasificación , Levaduras/genética
3.
Molecules ; 23(8)2018 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-30072592

RESUMEN

The aim of this study is to develop and validate an improved analytical method for the simultaneous quantification of 20 types of mycotoxins in grapes and wines. In this research, the optimization of tandem mass spectrometer (MS/MS) parameter, ultra-high pressure liquid chromatography (UHPLC) separation, and QuEChERS procedure, which includes wine/water ratio, the amount and type of salt, clean-up sorbent, were performed, and the whole separation of mycotoxins was accomplished within 7 min analyzing time. Under optimum conditions, recoveries ranged from 85.6% to 117.8%, while relative standard deviation (RSD) remained between 6.0% and 17.5%. The limit of detection (LOD, 0.06⁻10 µg/L) and the limit of quantification (LOQ, 0.18⁻30 µg/L) were lower than those permitted by legislation in food matrices, which demonstrated the high sensitivity and applicability of this efficient method. Finally, 36 grapes and 42 wine samples from the Hexi Corridor region were analyzed. Penicillic acid (PCA), mycophenolic acid (MPA), cyclopiazonic acid (CPA), fumonisin B1 (FB1) and zearalenone (ZEN) were detected in a small number of grape samples with lower concentrations between 0.10 µg/L and 81.26 µg/L. Meanwhile, ochratoxin A (OTA), aflatoxin B2 (AFB2), MPA, CPA, and ZEN were detected in some wine counterparts with concentrations ranged from 0.10 µg/L to 4.62 µg/L. However, the concentrations of the detected mycotoxins were much lower than the maximum legal limits set of other products.


Asunto(s)
Micotoxinas/análisis , Espectrometría de Masas en Tándem/métodos , Vitis/química , Vino/análisis , Calibración , China , Cromatografía Líquida de Alta Presión , Límite de Detección , Modelos Lineales , Estadística como Asunto , Agua/química
4.
Anal Sci ; 37(12): 1749-1755, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34219118

RESUMEN

Sunset yellow (SY) is a synthetic colorant which can cause allergies, diarrhea and other symptoms in sensitive people. When ingested too much, it can accumulate in the body and cause damage to the kidneys and liver. Therefore, the content of SY in food must be strictly controlled. In order to regulate their use and ensure food quality, simple and cost-effective methods need to be developed to identify them. In this experiment, fluorescent silicon nanoparticles (SiNPs) were prepared by a one-step method, which is simple, mild and less time-consuming. The fluorescent SiNPs prepared had good thermal stability, excellent salt resistance and pH stability. SY effectively quenched the fluorescence of SiNPs by fluorescence resonance energy transfer when added to the system as an interfering substance. The method had a good linear relationship in the range of SY concentration of 0.050 - 14.0 µg mL-1 and the detection limit is 0.023 µg mL-1. The established sensor was applied to the detection of SY in beverages, and the recovery rate was 93.8 - 102.4%. Based on the excellent selectivity and sensitivity of the method, it could provide a convenient way for the detection of SY in food samples.


Asunto(s)
Nanopartículas , Silicio , Compuestos Azo/análisis , Bebidas Gaseosas/análisis , Humanos
5.
Foods ; 10(10)2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34681547

RESUMEN

The attention of some winemakers and researchers over the past years has been drawn towards the partial or total dealcoholization of wines and alcoholic beverages due to trends in wine styles, and the effect of climate change on wine alcohol content. To achieve this, different techniques have been used at the various stages of winemaking, among which the physical dealcoholization techniques, particularly membrane separation (nanofiltration, reverse osmosis, evaporative perstraction, and pervaporation) and thermal distillation (vacuum distillation and spinning cone column), have shown promising results and hence are being used for commercial production. However, the removal of alcohol by these techniques can cause changes in color and losses of desirable volatile aroma compounds, which can subsequently affect the sensory quality and acceptability of the wine by consumers. Aside from the removal of ethanol, other factors such as the ethanol concentration, the kind of alcohol removal technique, the retention properties of the wine non-volatile matrix, and the chemical-physical properties of the aroma compounds can influence changes in the wine sensory quality during dealcoholization. This review highlights and summarizes some of the techniques for wine dealcoholization and their impact on wine quality to help winemakers in choosing the best technique to limit adverse effects in dealcoholized wines and to help meet the needs and acceptance among different targeted consumers such as younger people, pregnant women, drivers, and teetotalers.

6.
Membranes (Basel) ; 11(12)2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34940458

RESUMEN

Over the last few years, the dealcoholization of wine has piqued the interest of winemakers and researchers. Physical dealcoholization methods are increasingly used in the dealcoholization of wines because they can partially or completely reduce the alcohol content of wines. This study aimed to compare the chemical parameters, volatile composition and sensory quality of white, rosé and red wines dealcoholized by two physical dealcoholization methods: reverse osmosis (RO) and vacuum distillation (VD) at 0.7% v/v ethanol. RO and VD effectively reduced the ethanol concentration in all wines to the required 0.7% v/v, but also significantly affected most chemical parameters. The pH, free sulfur dioxide, total sulfur dioxide, and volatile acidity decreased significantly due to dealcoholization by RO and VD, while reducing sugars and total acidity increased significantly. VD resulted in higher color intensity, which was perceptible in dealcoholized rosé and red wines, while RO caused notable color differences in dealcoholized white and red wine fractions. RO were richer in esters (more ethyl esters and isoamyl acetate), higher alcohols, organic acids, terpenics and C13-norisoprenoids, and carbonyl compounds, while wines dealcoholized with VD had lower levels of these volatile compounds, which may reflect both the loss of esters into the distillate during evaporation and condensation (in the case of VD) and a shift in the chemical equilibrium responsible for ester formation and hydrolysis after ethanol removal. ß-damascenone exhibited the highest OAV in all wines, however, losses equal to 35.54-61.98% in RO dealcoholized fractions and 93.62% to 97.39% in VD dealcoholized fractions were observed compared to the control wines. The predominant aroma series in the original and dealcoholized wines were fruity and floral but were greatly affected by VD. Sensory evaluation and PCA showed that dealcoholization by RO improved the fruity and floral notes (in rosé and red wines), color intensity, sweetness, viscosity, and aroma intensity better than dealcoholization by VD, while VD mainly enhanced the color of the dealcoholized wines. Both methods increased the acidity of the respective dealcoholized wines. Nevertheless, RO dealcoholized wines achieved higher acceptance by the panelists than VD dealcoholized wines. Therefore, RO may be a better method for producing dealcoholized (0.7% v/v) wines with minimal impact on aroma and sensory quality.

7.
Foods ; 10(12)2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34945583

RESUMEN

This study examined the addition of carrot paste (CP) at levels of 3%, 5%, and 10% as a potential antioxidant in frankfurter-type sausages, denoted as F1, F2, and F3. F0, was a control sample with no addition of CP. All formulated samples were stored for 14 days during which their physicochemical, oxidative stability, and sensory properties were evaluated. Results showed that the pH of frankfurter-type sausages was not affected by the addition of CP, however, higher pH values were observed in CP-enriched samples on the first day of production and subsequent storage days. Cooking loss (CL) in frankfurter-type sausages was in the range of 2.20% to 2.87%, with the CP-enriched samples having a lower CL percentage, particularly F3 samples, compared to the control. Protein and fat content were lower in CP-enriched samples, but ash content increased. CP-enriched frankfurter-type sausages recorded significantly higher polyphenol contents compared to the control. Total polyphenol content in CP-enriched samples F1, F2, and F3 was higher throughout storage compared to the control. Lower peroxide values were also recorded in CP-enriched samples F1 (2.5 meq/kg), F2 (2.4 meq/kg), and F3 (2.2 meq/kg) compared to the control (2.9 meq/kg), demonstrating greater 2,2-Diphenyl-1-picrylhydrazyl (DPPH) antioxidant activity than the control samples. Formulations treated with 10% CP gained significantly higher scores for color, texture, and overall acceptability. Principal component analysis showed that higher inclusion levels of CP in formulation improved the sensory quality and oxidative stability. In conclusion, CP could be used to enhance the oxidative stability of frankfurter-type sausage without negatively influencing the sensory quality.

8.
Food Chem ; 313: 126163, 2020 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-31945702

RESUMEN

The copigmentation effects of polyphenol with different structures vary greatly. Therefore, the aim of this study is to investigate possible interactions in red wine model solutions between oenin and three phenolic compounds: danshensu, caffeic acid and rosmarinic acid. Our results show that the copigmentation of rosmarinic acid is the strongest among the compounds tested. The colourimetric parameters indicate that colour intensity becomes enhanced with increasing concentration of these copigments, leading to darker and more vivid bluish colours. Thermodynamic and quantum chemical investigations are performed to interpret the absorption properties in the visible range. Fluorescence spectroscopy confirms the interaction between caffeic acid and oenin, while FTIR spectroscopic results further suggest a role for hydrogen bonds in the overall process. To our knowledge, this is the first experimentally corroborated direct evidence of hydrogen bonds in copigmentation.


Asunto(s)
Antocianinas/química , Ácidos Cafeicos/química , Cinamatos/química , Depsidos/química , Lactatos/química , Vino , Color , Espectrometría de Fluorescencia , Espectroscopía Infrarroja por Transformada de Fourier , Termodinámica , Vino/análisis , Ácido Rosmarínico
9.
J Agric Food Chem ; 68(18): 5270-5281, 2020 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-32338508

RESUMEN

Monoterpene is one of the important sources of varietal aroma, which provides a strong floral and fruity aroma in wines. Methyl jasmonate (MeJA) affects plant secondary metabolism. However, the regulatory mechanisms of monoterpene biosynthesis after MeJA application on grapes are not illuminated. In the present study, 10 mM MeJA was used as treatments in Italian Riesling grape at the preveraison stage in different ways, including grape cluster soaking, foliar spraying, and whole vine spraying, designated as T1, T2, and T3, respectively, while a blank group was used as the control (CK). HS-SPME/GC-MS and transcriptome sequencing analysis were performed to investigate the effect of exogenous MeJA on monoterpene synthesis in grape berry skin. The results of GC-MS showed that the application of MeJA induced the accumulation of volatile monoterpenes in grape berry skin, especially linalool, α-terpineol, and oxides. In addition, transcriptome analysis showed that differentially expressed genes were increased from T2 to T3 to T1 compared with CK, and significantly enriched in JA and monoterpene synthesis pathways. T1 application significantly upregulated the mRNA expression levels of LOX2S, AOS, OPR, and JMT involved in the JA biosynthesis pathway, as well as DXS, HMGCR, TPS14, and α-terpineol synthesis genes involved in the monoterpene synthesis pathway compared with T2, T3, and CK. Thus, grape cluster soaking treatment with MeJA could greatly activate volatile monoterpene synthesis. The results will deeply increase our understanding of the monoterpene biosynthesis of grape berry skin in response to MeJA.


Asunto(s)
Acetatos/farmacología , Ciclopentanos/farmacología , Frutas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Monoterpenos/metabolismo , Oxilipinas/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/genética , Vitis/metabolismo , Vías Biosintéticas , Frutas/genética , Frutas/metabolismo , Perfilación de la Expresión Génica , Proteínas de Plantas/metabolismo , Vitis/efectos de los fármacos , Vitis/genética
10.
Foods ; 8(11)2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-31694278

RESUMEN

The aim of this study was to develop and validate an improved, simple, and sensitive method for the simultaneous determination of seven types (cadaverine, CAD; hexylamine, HEX; histamine, HIS; phenylethylamine, PEA; putrescine, PUT; tyramine, TYR) of biogenic amines (BAs) in wine matrices. For this reason, a modified QuEChERS combined with ultra-performance liquid chromatography coupled to a triple quadrupole mass spectrometry (UHPLC-QqQ-MS/MS) method was investigated. The optimization of UHPLC-QqQ-MS/MS separation and QuEChERS procedure was performed. Under optimum conditions, the excellent chromatographic performance of the whole separation was accomplished within 6.3 min analyzing time. Meanwhile, the recoveries ranged from 77.2% to 101.7%, while relative standard deviation (RSD) remained between 0.0% and 9.4%. The limit of detection (LOD, 0.50-1.00 µg/L) and the limit of quantification (LOQ, 1.65-3.30 µg/L) were lower than those permitted by legislation in food matrices, which demonstrated the high sensitivity and applicability of this efficient method. This validated method was also applied in a pilot study to analyze BAs in 81 wine samples from Hexi Corridor Region (Gansu Province, Northwest China), CAD, HEX, HIS, PEA, PUT, and TYR were detected to varying degrees in the samples. However, when compared with the existing standards, the BAs in all 81 wine samples did not exceed the prescribed limit value or toxic dose (2-40 mg/L). Moreover, a statistical approach was also conducted using Pearson correlation analysis, and to evaluate their concentrations in terms of wine parameters (storage time, grape variety, wine type, and basic physicochemical index). The results showed that, among the seven kinds of BAs, the concentration of HIS had a certain correlation with alcoholic degree and grape variety. In addition, the level of PEA had a certain correlation with the wine pH and wine storage time. It is worth noting that this seems to be the first report regarding the application of QuEChERS-UHPLC-QqQ-MS/MS in the analysis of BAs in wine in this region.

11.
J Food Sci ; 84(9): 2688-2697, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31441510

RESUMEN

An effective method for the determination of 49 pesticide residues and 17 mycotoxins in wine by a modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) method and ultrahigh-performance liquid chromatography-tandem mass spectrometry was developed. The target compounds were extracted with 1% (v/v) formic acid-acetonitrile, and no cleanup steps were required. The extracts were separated on a C18 chromatographic column (2.1 mm × 50 mm, 1.7 µm) with acetonitrile and water with 0.2% formic acid solution and ammonium acetate (10 mM) as the mobile phases under gradient elution at a flow rate of 0.2 mL/min. The determination was conducted using electrospray ionization in positive ion mode with multiple reaction monitoring. The analytes were quantified by comparison with matrix-matched standard solutions. The good linearities were obtained in the range of 0.05 to 500.0 µg/kg, and the correlation coefficients were all greater than 0.9935. The average recoveries of the 66 target compounds ranged from 69% to 119%, and the RSDs were in the range of 1% to 10%. The limits of detection were in the range of 0.05 to 20.0 µg/kg. The method was proved to be rapid, selective, sensitive, and stable, and it has been applied to analysis of 64 wine samples.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Micotoxinas/análisis , Plaguicidas/análisis , Espectrometría de Masas en Tándem/métodos , Vino/análisis , Límite de Detección , Modelos Lineales , Reproducibilidad de los Resultados
12.
Food Res Int ; 102: 468-477, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29195974

RESUMEN

In the recent research, the copigmentations of malvidin-3-O-glucoside with eight types of phenolic copigments have been investigated. The influence of the pigment/copigment molar ratio, the reaction temperature, the pH and the ethanol content of solutions has been examined. The results showed that the copigmentation effect was dependent on not only the particular structures of the phenolic compounds but also the factors of the reaction systems. The increase of the copigment concentration can strengthen the copigmentation effect, improve the solution color, and enhance the red-purple features. Different temperatures had different influences on the copigmentation reactions. The destruction of the copigmentation complexes can result in the hypsochromic shift of the reaction solution when the temperature was higher than 20°C. The bathochromic shift of the solution gradually progressed with the increase of the pH value. A significant copigmentation feature was spotted when pH reached 3.0, which demonstrates obvious red-purple characterization. The addition of the ethanol weakened the copigmentation effect. According to measurement through color analysis, it was found that the color differences caused by ethanol in red wine were typically attributed to quantitative changes. Remarkably, all of the above delicate color deviations caused by the structural or environmental factors can be precisely and conveniently depicted via the CIELAB space analysis.


Asunto(s)
Antocianinas/análisis , Color , Colorimetría/métodos , Etanol/análisis , Glucósidos/análisis , Fenoles/análisis , Temperatura , Vino/análisis , Concentración de Iones de Hidrógeno , Estructura Molecular , Relación Estructura-Actividad
13.
Food Sci Nutr ; 3(5): 453-65, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26405531

RESUMEN

For the purpose of SO2 reduction and stabilizing ice wine, a new antibacterial technique was developed and verified in order to reduce the content of sulfur dioxide (SO2) and simultaneously maintain protein stability during ice wine aging process. Hazardous bacterial strain (lactic acid bacteria, LAB) and protein stability of Italian Riesling ice wine were evaluated in terms of different amounts of lysozyme, SO2, polyphenols, and wine pH by single-factor experiments. Subsequently, a quadratic rotation-orthogonal composite design with four variables was conducted to establish the multiple linear regression model that demonstrated the influence of different treatments on synthesis score between LAB inhibition and protein stability of ice wine. The results showed that, synthesis score can be influenced by lysozyme and SO2 concentrations on an extremely significant level (P < 0.01). Furthermore, the lysozyme-combined antibacterial system, which is specially designed for ice wine aging, was optimized step by step by response surface methodology and ridge analysis. As a result, the optimal proportion should be control in ice wine as follows: 179.31 mg L(-1) lysozyme, 177.14 mg L(-1) SO2, 0.60 g L(-1) polyphenols, and 4.01 ice wine pH. Based on this system, the normalized synthesis score between LAB inhibition and protein stability can reach the highest point 0.920. Finally, by the experiments of verification and comparison, it was indicated that lysozyme-combined antibacterial system, which was a practical and prospective method to reduce SO2 concentration and effectively prevent contamination from hazardous LAB, can be used to stabilize ice wine during aging process.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda