Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Biol Chem ; 297(4): 101219, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34560100

RESUMEN

Polyamines are fundamental molecules of life, and their deep evolutionary history is reflected in extensive biosynthetic diversification. The polyamines putrescine, agmatine, and cadaverine are produced by pyridoxal 5'-phosphate-dependent L-ornithine, L-arginine, and L-lysine decarboxylases (ODC, ADC, LDC), respectively, from both the alanine racemase (AR) and aspartate aminotransferase (AAT) folds. Two homologous forms of AAT-fold decarboxylase are present in bacteria: an ancestral form and a derived, acid-inducible extended form containing an N-terminal fusion to the receiver-like domain of a bacterial response regulator. Only ADC was known from the ancestral form and limited to the Firmicutes phylum, whereas extended forms of ADC, ODC, and LDC are present in Proteobacteria and Firmicutes. Here, we report the discovery of ancestral form ODC, LDC, and bifunctional O/LDC and extend the phylogenetic diversity of functionally characterized ancestral ADC, ODC, and LDC to include phyla Fusobacteria, Caldiserica, Nitrospirae, and Euryarchaeota. Using purified recombinant enzymes, we show that these ancestral forms have a nascent ability to decarboxylate kinetically less preferred amino acid substrates with low efficiency, and that product inhibition primarily affects preferred substrates. We also note a correlation between the presence of ancestral ODC and ornithine/arginine auxotrophy and link this with a known symbiotic dependence on exogenous ornithine produced by species using the arginine deiminase system. Finally, we show that ADC, ODC, and LDC activities emerged independently, in parallel, in the homologous AAT-fold ancestral and extended forms. The emergence of the same ODC, ADC, and LDC activities in the nonhomologous AR-fold suggests that polyamine biosynthesis may be inevitable.


Asunto(s)
Proteínas Arqueales , Bacterias , Proteínas Bacterianas , Poliaminas Biogénicas , Carboxiliasas , Euryarchaeota , Evolución Molecular , Ornitina Descarboxilasa , Proteínas Arqueales/química , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Bacterias/enzimología , Bacterias/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Poliaminas Biogénicas/biosíntesis , Poliaminas Biogénicas/química , Carboxiliasas/química , Carboxiliasas/genética , Carboxiliasas/metabolismo , Euryarchaeota/enzimología , Euryarchaeota/genética , Ornitina Descarboxilasa/química , Ornitina Descarboxilasa/genética , Ornitina Descarboxilasa/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
2.
Mol Microbiol ; 97(5): 791-807, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25994085

RESUMEN

The polyamine spermidine is absolutely required for growth and cell proliferation in eukaryotes, due to its role in post-translational modification of essential translation elongation factor eIF5A, mediated by deoxyhypusine synthase. We have found that free-living ciliates Tetrahymena and Paramecium lost the eukaryotic genes encoding spermidine biosynthesis: S-adenosylmethionine decarboxylase (AdoMetDC) and spermidine synthase (SpdSyn). In Tetrahymena, they were replaced by a gene encoding a fusion protein of bacterial AdoMetDC and SpdSyn, present as three copies. In Paramecium, a bacterial homospermidine synthase replaced the eukaryotic genes. Individual AdoMetDC-SpdSyn fusion protein paralogues from Tetrahymena exhibit undetectable AdoMetDC activity; however, when two paralogous fusion proteins are mixed, AdoMetDC activity is restored and spermidine is synthesized. Structural modelling indicates a functional active site is reconstituted by sharing critical residues from two defective protomers across the heteromer interface. Paramecium was found to accumulate homospermidine, suggesting it replaces spermidine for growth. To test this concept, a budding yeast spermidine auxotrophic strain was found to grow almost normally with homospermidine instead of spermidine. Biosynthesis of spermidine analogue aminopropylcadaverine, but not exogenously provided norspermidine, correlated with some growth. Finally, we found that diverse single-celled eukaryotic parasites and multicellular metazoan Schistosoma worms have lost the spermidine biosynthetic pathway but retain deoxyhypusine synthase.


Asunto(s)
Eucariontes/metabolismo , Paramecium/genética , Paramecium/metabolismo , Poliaminas/metabolismo , Espermidina/biosíntesis , Tetrahymena thermophila/genética , Tetrahymena thermophila/metabolismo , Adenosilmetionina Descarboxilasa/química , Adenosilmetionina Descarboxilasa/genética , Adenosilmetionina Descarboxilasa/metabolismo , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Secuencia de Aminoácidos , Animales , Vías Biosintéticas/genética , Cadaverina/análogos & derivados , Cadaverina/biosíntesis , Eucariontes/genética , Fusión Génica , Modelos Moleculares , Datos de Secuencia Molecular , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Procesamiento Proteico-Postraduccional , Schistosoma/genética , Alineación de Secuencia , Espermidina/análogos & derivados , Espermidina/farmacología , Espermidina Sintasa/genética , Espermidina Sintasa/metabolismo , Levaduras/efectos de los fármacos , Levaduras/genética , Levaduras/crecimiento & desarrollo
3.
Mol Microbiol ; 86(2): 485-99, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22906379

RESUMEN

Structural backbones of iron-scavenging siderophore molecules include polyamines 1,3-diaminopropane and 1,5-diaminopentane (cadaverine). For the cadaverine-based desferroxiamine E siderophore in Streptomyces coelicolor, the corresponding biosynthetic gene cluster contains an ORF encoded by desA that was suspected of producing the cadaverine (decarboxylated lysine) backbone. However, desA encodes an l-2,4-diaminobutyrate decarboxylase (DABA DC) homologue and not any known form of lysine decarboxylase (LDC). The only known function of DABA DC is, together with l-2,4-aminobutyrate aminotransferase (DABA AT), to synthesize 1,3-diaminopropane. We show here that S. coelicolor desA encodes a novel LDC and we hypothesized that DABA DC homologues present in siderophore biosynthetic clusters in the absence of DABA AT ORFs would be novel LDCs. We confirmed this by correctly predicting the LDC activity of a DABA DC homologue from a Yersinia pestis siderophore biosynthetic pathway. The corollary was confirmed for a DABA DC homologue, adjacent to a DABA AT ORF in a siderophore pathway in the cyanobacterium Anabaena variabilis, which was shown to be a bona fide DABA DC. These findings enable prediction of whether a siderophore pathway will utilize 1,3-diaminopropane or cadaverine, and suggest that the majority of bacteria use DABA AT and DABA DC for siderophore, rather than norspermidine/polyamine biosynthesis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Carboxiliasas/metabolismo , Evolución Molecular , Sideróforos/biosíntesis , Streptomyces coelicolor/enzimología , Anabaena variabilis/química , Anabaena variabilis/enzimología , Anabaena variabilis/genética , Bacterias/química , Bacterias/enzimología , Bacterias/genética , Proteínas Bacterianas/genética , Carboxiliasas/genética , Datos de Secuencia Molecular , Filogenia , Poliaminas/metabolismo , Streptomyces coelicolor/genética
4.
J Biol Chem ; 286(50): 43301-12, 2011 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-22025614

RESUMEN

The availability of fully sequenced bacterial genomes has revealed that many species known to synthesize the polyamine spermidine lack the spermidine biosynthetic enzymes S-adenosylmethionine decarboxylase and spermidine synthase. We found that such species possess orthologues of the sym-norspermidine biosynthetic enzymes carboxynorspermidine dehydrogenase and carboxynorspermidine decarboxylase. By deleting these genes in the food-borne pathogen Campylobacter jejuni, we found that the carboxynorspermidine decarboxylase orthologue is responsible for synthesizing spermidine and not sym-norspermidine in vivo. In polyamine auxotrophic gene deletion strains of C. jejuni, growth is highly compromised but can be restored by exogenous sym-homospermidine and to a lesser extent by sym-norspermidine. The alternative spermidine biosynthetic pathway is present in many bacterial phyla and is the dominant spermidine route in the human gut, stomach, and oral microbiomes, and it appears to have supplanted the S-adenosylmethionine decarboxylase/spermidine synthase pathway in the gut microbiota. Approximately half of the gut Firmicutes species appear to be polyamine auxotrophs, but all encode the potABCD spermidine/putrescine transporter. Orthologues encoding carboxyspermidine dehydrogenase and carboxyspermidine decarboxylase are found clustered with an array of diverse putrescine biosynthetic genes in different bacterial genomes, consistent with a role in spermidine, rather than sym-norspermidine biosynthesis. Due to the pervasiveness of ε-proteobacteria in deep sea hydrothermal vents and to the ubiquity of the alternative spermidine biosynthetic pathway in that phylum, the carboxyspermidine route is also dominant in deep sea hydrothermal vents. The carboxyspermidine pathway for polyamine biosynthesis is found in diverse human pathogens, and this alternative spermidine biosynthetic route presents an attractive target for developing novel antimicrobial compounds.


Asunto(s)
Campylobacter jejuni/crecimiento & desarrollo , Campylobacter jejuni/metabolismo , Tracto Gastrointestinal/microbiología , Poliaminas/metabolismo , Espermidina/biosíntesis , Adenosilmetionina Descarboxilasa/genética , Adenosilmetionina Descarboxilasa/metabolismo , Campylobacter jejuni/efectos de los fármacos , Carboxiliasas/genética , Carboxiliasas/metabolismo , Cromatografía Líquida de Alta Presión , Humanos , Transducción de Señal , Espermidina/metabolismo , Espermidina/farmacología , Espermidina Sintasa/genética , Espermidina Sintasa/metabolismo
5.
Mol Microbiol ; 81(4): 1109-24, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21762220

RESUMEN

We have identified gene fusions of polyamine biosynthetic enzymes S-adenosylmethionine decarboxylase (AdoMetDC, speD) and aminopropyltransferase (speE) orthologues in diverse bacterial phyla. Both domains are functionally active and we demonstrate the novel de novo synthesis of the triamine spermidine from the diamine putrescine by fusion enzymes from ß-proteobacterium Delftia acidovorans and δ-proteobacterium Syntrophus aciditrophicus, in a ΔspeDE gene deletion strain of Salmonella enterica sv. Typhimurium. Fusion proteins from marine α-proteobacterium Candidatus Pelagibacter ubique, actinobacterium Nocardia farcinica, chlorobi species Chloroherpeton thalassium, and ß-proteobacterium D. acidovorans each produce a different profile of non-native polyamines including sym-norspermidine when expressed in Escherichia coli. The different aminopropyltransferase activities together with phylogenetic analysis confirm independent evolutionary origins for some fusions. Comparative genomic analysis strongly indicates that gene fusions arose by merger of adjacent open reading frames. Independent fusion events, and horizontal and vertical gene transfer contributed to the scattered phyletic distribution of the gene fusions. Surprisingly, expression of fusion genes in E. coli and S. Typhimurium revealed novel latent spermidine catabolic activity producing non-native 1,3-diaminopropane in these species. We have also identified fusions of polyamine biosynthetic enzymes agmatine deiminase and N-carbamoylputrescine amidohydrolase in archaea, and of S-adenosylmethionine decarboxylase and ornithine decarboxylase in the single-celled green alga Micromonas.


Asunto(s)
Adenosilmetionina Descarboxilasa/genética , Vías Biosintéticas/genética , Evolución Molecular , Fusión Génica , Putrescina/metabolismo , Espermidina Sintasa/genética , Espermidina/metabolismo , Adenosilmetionina Descarboxilasa/metabolismo , Archaea/genética , Archaea/metabolismo , Bacterias/genética , Bacterias/metabolismo , Espermidina Sintasa/metabolismo
6.
J Biol Chem ; 285(50): 39224-38, 2010 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-20876533

RESUMEN

Arginine decarboxylases (ADCs; EC 4.1.1.19) from four different protein fold families are important for polyamine biosynthesis in bacteria, archaea, and plants. Biosynthetic alanine racemase fold (AR-fold) ADC is widespread in bacteria and plants. We report the discovery and characterization of an ancestral form of the AR-fold ADC in the bacterial Chloroflexi and Bacteroidetes phyla. The ancestral AR-fold ADC lacks a large insertion found in Escherichia coli and plant AR-fold ADC and is more similar to the lysine biosynthetic enzyme meso-diaminopimelate decarboxylase, from which it has evolved. An E. coli acid-inducible ADC belonging to the aspartate aminotransferase fold (AAT-fold) is involved in acid resistance but not polyamine biosynthesis. We report here that the acid-inducible AAT-fold ADC has evolved from a shorter, ancestral biosynthetic AAT-fold ADC by fusion of a response regulator receiver domain protein to the N terminus. Ancestral biosynthetic AAT-fold ADC appears to be limited to firmicute bacteria. The phylogenetic distribution of different forms of ADC distinguishes bacteria from archaea, euryarchaeota from crenarchaeota, double-membraned from single-membraned bacteria, and firmicutes from actinobacteria. Our findings extend to eight the different enzyme forms carrying out the activity described by EC 4.1.1.19. ADC gene clustering reveals that polyamine biosynthesis employs diverse and exchangeable synthetic modules. We show that in Bacillus subtilis, ADC and polyamines are essential for biofilm formation, and this appears to be an ancient, evolutionarily conserved function of polyamines in bacteria. Also of relevance to human health, we found that arginine decarboxylation is the dominant pathway for polyamine biosynthesis in human gut microbiota.


Asunto(s)
Bacillus subtilis/metabolismo , Biopelículas , Carboxiliasas/metabolismo , Poliaminas/química , Alanina Racemasa/metabolismo , Secuencia de Aminoácidos , Clonación Molecular , Escherichia coli/metabolismo , Genómica , Humanos , Intestinos/microbiología , Conformación Molecular , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Filogenia , Homología de Secuencia de Aminoácido
7.
Plant Physiol Biochem ; 48(7): 513-20, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20227886

RESUMEN

Polyamine biosynthesis in plants differs from other eukaryotes because of the contribution of genes from the cyanobacterial ancestor of the chloroplast. Plants possess an additional biosynthetic route for putrescine formation from arginine, consisting of the enzymes arginine decarboxylase, agmatine iminohydrolase and N-carbamoylputrescine amidohydrolase, derived from the cyanobacterial ancestor. They also synthesize an unusual tetraamine, thermospermine, that has important developmental roles and which is evolutionarily more ancient than spermine in plants and algae. Single-celled green algae have lost the arginine route and are dependent, like other eukaryotes, on putrescine biosynthesis from the ornithine. Some plants like Arabidopsis thaliana and the moss Physcomitrella patens have lost ornithine decarboxylase and are thus dependent on the arginine route. With its dependence on the arginine route, and the pivotal role of thermospermine in growth and development, Arabidopsis represents the most specifically plant mode of polyamine biosynthesis amongst eukaryotes. A number of plants and algae are also able to synthesize unusual polyamines such as norspermidine, norspermine and longer polyamines, and biosynthesis of these amines likely depends on novel aminopropyltransferases similar to thermospermine synthase, with relaxed substrate specificity. Plants have a rich repertoire of polyamine-based secondary metabolites, including alkaloids and hydroxycinnamic amides, and a number of polyamine-acylating enzymes have been recently characterised. With the genetic tools available for Arabidopsis and other model plants and algae, and the increasing capabilities of comparative genomics, the biological roles of polyamines can now be addressed across the plant evolutionary lineage.


Asunto(s)
Evolución Biológica , Chlorophyta/metabolismo , Enzimas/metabolismo , Plantas/metabolismo , Poliaminas/metabolismo , Arabidopsis/metabolismo , Vías Biosintéticas , Bryopsida/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda