Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
J Am Chem Soc ; 146(12): 8362-8371, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38483326

RESUMEN

Emulsions are indispensable in everyday life, and the demand for emulsions' diversity and control of properties is therefore substantial. As emulsions possess a high internal surface area, an understanding of the oil/water (o/w) interfaces at the molecular level is fundamental but often impaired by experimental limitations to probe emulsion interfaces in situ. Here, we have used light-responsive surfactants (butyl-AAP) that can photoisomerize between E and Z isomers by visible and UV light irradiation to tune the emulsion interfaces. This causes massive changes in the interface tension at the extended o/w interfaces in macroemulsions and a drastic shift in the surfactants' critical micelle concentration, which we show can be used to control both the stability and phase separation. Strikingly different from macroemulsions are nanoemulsions (RH ∼90 nm) as these are not susceptible to E/Z photoisomerization of the surfactants in terms of changes in their droplet size or ζ-potential. However, in situ second-harmonic scattering and pulsed-field gradient nuclear magnetic resonance (NMR) experiments show dramatic and reversible changes in the surface excess of surfactants at the nanoscopic interfaces. The apparent differences in ζ-potentials and surface excess provide evidence for a fixed charge to particle size ratio and the need for counterion condensation to renormalize the particle charge to a critical charge, which is markedly different compared to the behavior of very large particles in macroemulsions. Thus, our findings may have broader implications as the electrostatic stabilization of nanoparticles requires much lower surfactant concentrations, allowing for a more sustainable use of surfactants.

2.
J Am Chem Soc ; 146(1): 1026-1034, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38117539

RESUMEN

Graphene nanoribbons (GNRs) have garnered significant interest due to their highly customizable physicochemical properties and potential utility in nanoelectronics. Besides controlling widths and edge structures, the inclusion of chirality in GNRs brings another dimension for fine-tuning their optoelectronic properties, but related studies remain elusive owing to the absence of feasible synthetic strategies. Here, we demonstrate a novel class of cove-edged chiral GNRs (CcGNRs) with a tunable chiral vector (n,m). Notably, the bandgap and effective mass of (n,2)-CcGNR show a distinct positive correlation with the increasing value of n, as indicated by theory. Within this GNR family, two representative members, namely, (4,2)-CcGNR and (6,2)-CcGNR, are successfully synthesized. Both CcGNRs exhibit prominently curved geometries arising from the incorporated [4]helicene motifs along their peripheries, as also evidenced by the single-crystal structures of the two respective model compounds (1 and 2). The chemical identities and optoelectronic properties of (4,2)- and (6,2)-CcGNRs are comprehensively investigated via a combination of IR, Raman, solid-state NMR, UV-vis, and THz spectroscopies as well as theoretical calculations. In line with theoretical expectation, the obtained (6,2)-CcGNR possesses a low optical bandgap of 1.37 eV along with charge carrier mobility of ∼8 cm2 V-1 s-1, whereas (4,2)-CcGNR exhibits a narrower bandgap of 1.26 eV with increased mobility of ∼14 cm2 V-1 s-1. This work opens up a new avenue to precisely engineer the bandgap and carrier mobility of GNRs by manipulating their chiral vector.

3.
J Am Chem Soc ; 146(2): 1710-1721, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38175928

RESUMEN

The influence of the microstructure on the ionic conductivity and cell performance is a topic of broad scientific interest in solid-state batteries. The current understanding is that interfacial decomposition reactions during cycling induce local strain at the interfaces between solid electrolytes and the anode/cathode, as well as within the electrode composites. Characterizing the effects of internal strain on ion transport is particularly important, given the significant local chemomechanical effects caused by volumetric changes of the active materials during cycling. Here, we show the effects of internal strain on the bulk ionic transport of the argyrodite Li6PS5Br. Internal strain is reproducibly induced by applying pressures with values up to 10 GPa. An internal permanent strain is observed in the material, indicating long-range strain fields typical for dislocations. With increasing dislocation densities, an increase in the lithium ionic conductivity can be observed that extends into improved ionic transport in solid-state battery electrode composites. This work shows the potential of strain engineering as an additional approach for tuning ion conductors without changing the composition of the material itself.

4.
Inorg Chem ; 63(19): 8698-8709, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38688036

RESUMEN

Li3Y1-xInxCl6 undergoes a phase transition from trigonal to monoclinic via an intermediate orthorhombic phase. Although the trigonal yttrium containing the end member phase, Li3YCl6, synthesized by a mechanochemical route, is known to exhibit stacking fault disorder, not much is known about the monoclinic phases of the serial composition Li3Y1-xInxCl6. This work aims to shed light on the influence of the indium substitution on the phase evolution, along with the evolution of stacking fault disorder using X-ray and neutron powder diffraction together with solid-state nuclear magnetic resonance spectroscopy, studying the lithium-ion diffusion. Although Li3Y1-xInxCl6 with x ≤ 0.1 exhibits an ordered trigonal structure like Li3YCl6, a large degree of stacking fault disorder is observed in the monoclinic phases for the x ≥ 0.3 compositions. The stacking fault disorder materializes as a crystallographic intergrowth of faultless domains with staggered layers stacked in a uniform layer stacking, along with faulted domains with randomized staggered layer stacking. This work shows how structurally complex even the "simple" series of solid solutions can be in this class of halide-based lithium-ion conductors, as apparent from difficulties in finding a consistent structural descriptor for the ionic transport.

5.
J Am Chem Soc ; 145(13): 7147-7158, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36946557

RESUMEN

Aliovalent substitution is a common strategy to improve the ionic conductivity of solid electrolytes for solid-state batteries. The substitution of SbS43- by WS42- in Na2.9Sb0.9W0.1S4 leads to a very high ionic conductivity of 41 mS cm-1 at room temperature. While pristine Na3SbS4 crystallizes in a tetragonal structure, the substituted Na2.9Sb0.9W0.1S4 crystallizes in a cubic phase at room temperature based on its X-ray diffractogram. Here, we show by performing pair distribution function analyses and static single-pulse 121Sb NMR experiments that the short-range order of Na2.9Sb0.9W0.1S4 remains tetragonal despite the change in the Bragg diffraction pattern. Temperature-dependent Raman spectroscopy revealed that changed lattice dynamics due to the increased disorder in the Na+ substructure leads to dynamic sampling causing the discrepancy in local and average structure. While showing no differences in the local structure, compared to pristine Na3SbS4, quasi-elastic neutron scattering and solid-state 23Na nuclear magnetic resonance measurements revealed drastically improved Na+ diffusivity and decreased activation energies for Na2.9Sb0.9W0.1S4. The obtained diffusion coefficients are in very good agreement with theoretical values and long-range transport measured by impedance spectroscopy. This work demonstrates the importance of studying the local structure of ionic conductors to fully understand their transport mechanisms, a prerequisite for the development of faster ionic conductors.

6.
J Am Chem Soc ; 144(1): 228-235, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34962807

RESUMEN

Structurally precision graphene nanoribbons (GNRs) are promising candidates for next-generation nanoelectronics due to their intriguing and tunable electronic structures. GNRs with hybrid edge structures often confer them unique geometries associated with exotic physicochemical properties. Herein, a novel type of cove-edged GNRs with periodic short zigzag-edge segments is demonstrated. The bandgap of this GNR family can be tuned using an interplay between the length of the zigzag segments and the distance of two adjacent cove units along the opposite edges, which can be converted from semiconducting to nearly metallic. A family member with periodic cove-zigzag edges based on N = 6 zigzag-edged GNR, namely 6-CZGNR-(2,1), is successfully synthesized in solution through the Scholl reaction of a unique snakelike polymer precursor (10) that is achieved by the Yamamoto coupling of a structurally flexible S-shaped phenanthrene-based monomer (1). The efficiency of cyclodehydrogenation of polymer 10 toward 6-CZGNR-(2,1) is validated by FT-IR, Raman, and UV-vis spectroscopies, as well as by the study of two representative model compounds (2 and 3). Remarkably, the resultant 6-CZGNR-(2,1) exhibits an extended and broad absorption in the near-infrared region with a record narrow optical bandgap of 0.99 eV among the reported solution-synthesized GNRs. Moreover, 6-CZGNR-(2,1) exhibits a high macroscopic carrier mobility of ∼20 cm2 V-1 s-1 determined by terahertz spectroscopy, primarily due to the intrinsically small effective mass (m*e = m*h = 0.17 m0), rendering this GNR a promising candidate for nanoelectronics.

7.
Angew Chem Int Ed Engl ; 61(3): e202109313, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-34766691

RESUMEN

The zeolite catalyst SSZ-42 shows a remarkable high abundance (≈80 %) of hydrogen-bonded Brønsted acid sites (BAS), which are deshielded from the 1 H chemical shift of unperturbed BAS at typically 4 ppm. This is due to their interaction with neighboring oxygen atoms in the zeolite framework when oxygen alignments are suitable. The classification and diversity of hydrogen bonding is assessed by DFT calculations, showing that oval-shaped 6-rings and 5-rings allow for a stronger hydrogen bond to oxygen atoms on the opposite ring side, yielding higher experimental chemical shifts (δ (1 H)=6.4 ppm), than circular 6-rings (δ(1 H)=5.2 ppm). Cage-like structures and intra-tetrahedral interactions can also form hydrogen bonds. The alignment of oxygen atoms is expected to impact their role in the stabilization of intermediates in catalytic reactions, such as surface alkoxy groups and possibly transition states.

8.
Angew Chem Int Ed Engl ; 61(42): e202209391, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36005897

RESUMEN

While the range of accessible borylenes has significantly broadened over the last decade, applications remain limited. Herein, we present tricoordinate oxy-borylenes as potent photoreductants that can be readily activated by visible light. Facile oxidation of CAAC stabilized oxy-borylenes (CAAC)(IPr2 Me2 )BOR (R=TMS, CH2 CH2 C6 H5 , CH2 CH2 (4-F)C6 H4 ) to their corresponding radical cations is achieved with mildly oxidizing ferrocenium ion. Cyclovoltammetric studies reveal ground-state redox potentials of up to -1.90 V vs. Fc+/0 for such oxy-borylenes placing them among the strongest organic super electron donors. Their ability as photoreductants is further supported by theoretical studies and showcased by the application as stoichiometric reagents for the photochemical hydrodehalogenation of aryl chlorides, aryl bromides and unactivated alkyl bromides as well as the detosylation of anilines.

9.
Chemistry ; 27(52): 13249-13257, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34270155

RESUMEN

The first comprehensive solid-state nuclear magnetic resonance (NMR) characterization of geminal alane-phosphane frustrated Lewis pairs (Al/P FLPs) is reported. Their relevant NMR parameters (isotropic chemical shifts, direct and indirect 27 Al-31 P spin-spin coupling constants, and 27 Al nuclear electric quadrupole coupling tensor components) have been determined by numerical analysis of the experimental NMR line shapes and compared with values computed from the known crystal structures by using density functional theory (DFT) methods. Our work demonstrates that the 31 P NMR chemical shifts for the studied Al/P FLPs are very sensitive to slight structural inequivalences. The 27 Al NMR central transition signals are spread out over a broad frequency range (>200 kHz), owing to the presence of strong nuclear electric quadrupolar interactions that can be well-reproduced by the static 27 Al wideband uniform rate smooth truncation (WURST) Carr-Purcell-Meiboom-Gill (WCPMG) NMR experiment. 27 Al chemical shifts and quadrupole tensor components offer a facile and clear distinction between three- and four-coordinate aluminum environments. For measuring internuclear Al⋅⋅⋅P distances a new resonance-echo saturation-pulse double-resonance (RESPDOR) experiment was developed by using efficient saturation via frequency-swept WURST pulses. The successful implementation of this widely applicable technique indicates that internuclear Al⋅⋅⋅P distances in these compounds can be measured within a precision of ±0.1 Å.

10.
Chemistry ; 27(69): 17361-17368, 2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34636454

RESUMEN

The bicyclic amido-substituted silicon(I) ring compound Si4 {N(SiMe3 )Mes}4 2 (Mes=Mesityl=2,4,6-Me3 C6 H2 ) features enhanced zwitterionic character and different reactivity from the analogous compound Si4 {N(SiMe3 )Dipp}4 1 (Dipp=2,6-i Pr2 C6 H3 ) due to the smaller mesityl substituents. In a reaction with the N-heterocyclic carbene NHC Me 4 (1,3,4,5-tetramethyl-imidazol-2-ylidene), we observe adduct formation to give Si4 {N(SiMe3 )Mes}4 ⋅ NHC Me 4 (3). This adduct reacts further with the Lewis acid BH3 to yield the Lewis acid-base complex Si4 {N(SiMe3 )Mes}4 ⋅ NHC Me 4 ⋅ BH3 (4). Coordination of AlBr3 to 2 leads to the adduct 5. Calculated proton affinities and fluoride ion affinities reveal highly Lewis basic and very weak Lewis acidic character of the low-valent silicon atoms in 1 and 2. This is confirmed by protonation of 1 and 2 with Brookharts acid yielding 6 and 7. Reaction with diphenylacetylene only occurs at 111 °C with 2 in toluene and is accompanied by fragmentation of 2 to afford the silacyclopropene 8 and the trisilanorbornadiene species 9.

11.
Chemistry ; 27(14): 4617-4626, 2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33350532

RESUMEN

Understanding the relationship between molecular design and packing modes constitutes one of the major challenges in self-assembly and is essential for the preparation of functional materials. Herein, we have achieved high precision control over the supramolecular packing of amphiphilic PtII complexes by systematic variation of the hydrophilic side-chain length. A novel approach of general applicability based on complementary X-ray diffraction and solid-state NMR spectroscopy has allowed us to establish a clear correlation between molecular features and supramolecular ordering. Systematically increasing the side-chain length gradually increases the steric demand and reduces the extent of aromatic interactions, thereby inducing a gradual shift in the molecular packing from parallel to a long-slipped organization. Notably, our findings highlight the necessity of advanced solid-state NMR techniques to gain structural information for supramolecular systems where single-crystal growth is not possible. Our work further demonstrates a new molecular design strategy to modulate aromatic interaction strengths and packing arrangements that could be useful for the engineering of functional materials based on PtII and aromatic molecules.

12.
Org Biomol Chem ; 19(10): 2186-2191, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33624672

RESUMEN

Light-responsive modulation of the longitudinal (T1) and transversal relaxation times of a fluorinated cyclodextrin has been achieved by host-guest complexation with arylazopyrazole-modified metal complexes in aqueous solution. This supramolecular concept can potentially be applied to the development of contrast agents for 19F magnetic resonance imaging (MRI).

13.
J Phys Chem A ; 125(25): 5643-5649, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34138561

RESUMEN

Recent years have witnessed the development of solid-state NMR techniques that allow the direct investigation of extremely wide inhomogeneously broadened resonance lines. To date, this typically involves the application of frequency sweeps as offered by wideband uniform rate smooth truncation (WURST) pulses. While the effects of such advanced irradiation schemes on static samples are well understood, the interference between the varying carrier frequency and the time-dependent evolution of the spin system under magic-angle spinning (MAS) conditions is more complex. Herein, we introduce the well-known WURST-Carr-Purcell-Meiboom-Gill (WCPMG) pulse sequence for spinning samples. Using numerical spin-density matrix analysis, an ideal design based on fast frequency sweeps and high truncation of the incorporated WURST pulses is presented that enables uniform excitation/refocusing under MAS conditions with low-to-moderate radio-frequency power requirements. This permits the acquisition of ultra-wideline MAS NMR lines exceeding 500 kHz with chemical shift resolution in a single transmitter step.

14.
Angew Chem Int Ed Engl ; 60(42): 22879-22884, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34363618

RESUMEN

The synthesis and characterization of the bis(η6 -benzene)lithium cation, the benzene metallocene of the lightest metal, is reported. The boron compound FmesBCl2 [Fmes: 2,4,6-tris(trifluoromethyl)phenyl] reacted with three molar equivalents of the lithio-acetylene reagent Li-C≡C-Fmxyl [Fmxyl: 3,5-bis(trifluoromethyl)phenyl]. Subsequent crystallization from benzene gave the [bis(η6 -benzene)Li]+ cation with the [{FmesB(-C≡C-Fmxyl)3 }2 Li]- anion. This parent [(arene)2 Li]+ cation shows an eclipsed arrangement of the pair of benzene ligands at the central lithium cation with uniform carbon-lithium bond lengths. The corresponding [(η6 -toluene)2 Li]+ and [(η6 -durene)2 Li]+ containing salts were similarly prepared. The bis(arene)lithium cations were characterized by X-ray diffraction, by solid-state 7 Li MAS NMR spectroscopy and their bonding features were analyzed by DFT calculations.

15.
J Am Chem Soc ; 142(43): 18293-18298, 2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33078947

RESUMEN

Structurally well-defined graphene nanoribbons (GNRs) have emerged as highly promising materials for the next-generation nanoelectronics. The electronic properties of GNRs critically depend on their edge topologies. Here, we demonstrate the efficient synthesis of a curved GNR (cGNR) with a combined cove, zigzag, and armchair edge structure, through bottom-up synthesis. The curvature of the cGNR is elucidated by the corresponding model compounds tetrabenzo[a,cd,j,lm]perylene (1) and diphenanthrene-fused tetrabenzo[a,cd,j,lm]perylene (2), the structures of which are unambiguously confirmed by the X-ray single-crystal analysis. The resultant multi-edged cGNR exhibits a well-resolved absorption at the near-infrared (NIR) region with a maximum peak at 850 nm, corresponding to a narrow optical energy gap of ∼1.22 eV. Employing THz spectroscopy, we disclose a long scattering time of ∼60 fs, corresponding to a record intrinsic charge carrier mobility of ∼600 cm2 V-1 s-1 for photogenerated charge carriers in cGNR.

16.
Chemistry ; 26(69): 16497-16503, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-32720370

RESUMEN

Development of high-performance photocatalysts for the conversion of amines is of great importance, but has remained a challenging task. Here, a bis-anthracene fused porphyrin (AFP) was synthesized in a high yield by a facile synthetic protocol, which involves a Suzuki coupling for the conjugation of two anthracene groups with a porphyrin ring, followed by oxidative cyclodehydrogenation. When serving as a photocatalyst, AFP exhibits an outstanding photocatalytic performance for the visible-light-induced aerobic oxidation of amines to imines at ambient conditions. Density functional theory calculations revealed that the low energy band gap, caused by the large planar and π-extended porphyrin structure of AFP, contributed to its high photocatalytic performance.

17.
Chemistry ; 26(6): 1269-1273, 2020 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-31737944

RESUMEN

The active six-membered cyclo-FLP 6 undergoes a rapid P/B addition reaction to carbon dioxide. At elevated temperature, the resulting heterobicyclo[2.2.2]octane derived product 7 undergoes ring opening and equilibrates with the cyclotetramer (7)4 . In the large macrocyclic structure, four monomeric six-membered cyclo-FLP units are connected by four CO2 molecules to form the supramolecular ring system. The P/B cyclo-FLP 6 undergoes a variety of additional cycloaddition reactions.

18.
Chemistry ; 26(44): 10005-10013, 2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32374463

RESUMEN

Besides their widespread use in coordination chemistry, 2,2'-bipyridines are known for their ability to undergo cis-trans conformational changes in response to metal ions and acids, which has been primarily investigated at the molecular level. However, the exploitation of such conformational switching in self-assembly has remained unexplored. In this work, the use of 2,2'-bipyridines as acid-responsive conformational switches to tune supramolecular polymerization processes has been demonstrated. To achieve this goal, we have designed a bipyridine-based linear bolaamphiphile, 1, that forms ordered supramolecular polymers in aqueous media through cooperative aromatic and hydrophobic interactions. Interestingly, addition of acid (TFA) induces the monoprotonation of the 2,2'-bipyridine moiety, leading to a switch in the molecular conformation from a linear (trans) to a V-shaped (cis) state. This increase in molecular distortion along with electrostatic repulsions of the positively charged bipyridine-H+ units attenuate the aggregation tendency and induce a transformation from long fibers to shorter thinner fibers. Our findings may contribute to opening up new directions in molecular switches and stimuli-responsive supramolecular materials.

19.
J Phys Chem A ; 124(21): 4314-4321, 2020 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32356988

RESUMEN

Chirped excitation using frequency-swept wideline uniform rate smooth truncation (WURST) pulses in combination with Carr-Purcell-Meiboom-Gill acquisition (WCPMG) is currently the state-of-the-art method for the direct observation of the central transition (CT) in static ultra-wideline nuclear magnetic resonance (NMR) of half-integer spin quadrupolar nuclei. However, CT lineshape distortions and an inefficient, large number of transmitter steps in frequency-stepped acquisition are two major drawbacks. Here, we identify three main sources for lineshape distortions occurring in WCPMG NMR spectra of the CT: (I) distortions due to inaccurate setting of the radio frequency field strength, (II) chirped-excitation artifacts, and (III) distortions due to non-selective irradiation. A new and efficient approach for the acquisition minimizing these distortions is presented using low sweep rates (R ≤ 5 kHz/µs) and sweep widths (Δ ≤ 600 kHz). We further demonstrate that such an acquisition strategy also minimizes the number of transmitter steps in ultra-wideline NMR. This is achieved from numerical simulations and theoretical analysis of the orientational dependence for the quadrupolar-perturbed Zeeman states and their transition frequencies. The theoretically derived strategies are validated experimentally, allowing us to set up guidelines for the optimum recording of wideline and ultra-wideline WCPMG NMR spectra.

20.
Molecules ; 25(2)2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31947638

RESUMEN

We demonstrate that supercycles of previously introduced two-fold symmetry dipolar recoupling schemes may be utilized successfully in homonuclear correlation nuclear magnetic resonance (NMR) spectroscopy for probing proximities among half-integer spin quadrupolar nuclei in network materials undergoing magic-angle-spinning (MAS). These (SR2 2 1 ) M , (SR2 4 1 ) M , and (SR2 8 1 )M recoupling sequences with M = 3 and M = 4 offer comparably efficient magnetization transfers in single-quantum-single-quantum (1Q-1Q) correlation NMR experiments under moderately fast MAS conditions, as demonstrated at 14.1 T and 24 kHz MAS in the contexts of 11 B NMR on a Na 2 O-CaO-B 2 O 3 -SiO 2 glass and 27 Al NMR on the open framework aluminophosphate AlPO-CJ19 [(NH 4 ) 2 Al 4 (PO 4 ) 4 HPO 4 · H 2 O]. Numerically simulated magnetization transfers in spin-3/2 pairs revealed a progressively enhanced tolerance to resonance offsets and rf-amplitude errors of the recoupling pulses along the series (SR2 2 1 ) M < (SR2 4 1 ) M < (SR2 8 1 )M for increasing differences in chemical shifts between the two nuclei. Nonetheless, for scenarios of a relatively minor chemical-shift dispersions ( ≲ 3 kHz), the (SR2 2 1 )M supercycles perform best both experimentally and in simulations.


Asunto(s)
Algoritmos , Compuestos de Aluminio/química , Simulación por Computador , Vidrio/química , Espectroscopía de Resonancia Magnética/métodos , Imanes , Modelos Teóricos , Teoría Cuántica
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda