RESUMEN
We theoretically demonstrate that pure magnetic quadrupole (MQ) scattering is achieved via the excitation of anapole modes and Fano resonance in noble metal (Au or Ag) and high refractive index dielectric (AlGaAs) hybrid nano-antennas. In Au-AlGaAs hybrid nano-antennas, electric anapole and magnetic anapole modes are observed, leading to the suppressions of electric and magnetic dipoles. Introducing gain material to AlGaAs nanodisk to increase the strength of electric quadrupole (EQ) Fano resonance leads to the suppression of EQ scattering. Then, ideal MQ scattering is achieved at the wavelength of total scattering cross-section dip. The increase of signal-to-noise ratio of MQ results in the great enhancement of near-field inside AlGaAs nanodisk. Additionally, the strong MQ resonance exhibits great capability for boosting second-harmonic generation by proper mode matching. These findings achieved in subwavelength geometries have important implications for functional metamaterials and nonlinear photonic nanodevices.
RESUMEN
The transport properties of a single plasmon interacting with a hybrid system composed of a semiconductor quantum dot (SQD) and a metal nanoparticle (MNP) coupled to a one-dimensional surface plasmonic waveguide are investigated theoretically via the real-space approach. We considered that the MNP-SQD interaction leads to the formation of a hybrid exciton and the transmission and reflection of a single incident plasmon could be controlled by adjusting the frequency of the classical control field applied to the MNP-SQD hybrid nanosystem, the kinds of MNPs and the background media. The transport properties of a single plasmon interacting with such a hybrid nanosystem discussed here could find applications in the design of next-generation quantum devices, such as single-photon switching and nanomirrors, and in quantum information processing.
RESUMEN
The CdS/SiO(2) core/shell nanowires (NWs) with controlled shell thickness were successfully synthesized and subsequently heat-treated at 500 °C. The influences of silica shell coating and annealing processes on their optical properties have been investigated. Compared with original CdS NWs, the annealed CdS/SiO(2) NWs exhibited an enhanced band-edge emission with slowed photoluminescence lifetime, while the intensity of defect emission decreased. The results were ascribed to the surface passivation and recrystallization by shell coating and annealing. We believe our finding would help improving the optical properties of semiconductor NWs, and facilitate its applications in various realms, such as nanoscale emitter, sensor, and photoelectric device.
Asunto(s)
Compuestos de Cadmio/química , Mediciones Luminiscentes/instrumentación , Nanotubos/química , Nanotubos/ultraestructura , Compuestos de Selenio/química , Dióxido de Silicio/química , Diseño de Equipo , Análisis de Falla de Equipo , Dureza , Calor , Tamaño de la PartículaRESUMEN
We theoretically investigated optical third-order nonlinearity of a coherently coupled exciton-plasmon hybrid system under a strong control field with a weak probe field. The analytic formulas of exciton population and effective third-order optical susceptibility of the hybrid of a metal nanoparticle (MNP) and a semiconductor quantum dot (SQD) were deduced. The bistable exciton population and the induced bistable nonlinear absorption and refraction response were revealed. The bistability region can be tuned by adjusting the size of metal nanoparticle, interparticle distance and intensity of control field. Our results have perspective applications in optical information processing based on resonant coupling of exciton-plasmon.
Asunto(s)
Nanopartículas del Metal , Modelos Teóricos , Dinámicas no Lineales , Puntos Cuánticos , Resonancia por Plasmón de Superficie/métodos , Campos ElectromagnéticosRESUMEN
The complex magnetic dipole plasmon couplings in double split-ring resonators are investigated. Two split peaks in the absorption spectrum of these coupled systems are observed, but even the shorter-wavelength resonance peak can be redshifted compared to the peaks of individual rings. The magnetic plasmon fields outside rings are found to play an important role in these strong couplings. Because of them, both bonding and antibonding plasmon hybridizations occur at each split peak. When bonding coupling effects are stronger than those of antibonding ones, this abnormal splitting behavior appears. When the coupling between rings becomes weaker, the splitting phenomenon tends to be normal.
RESUMEN
We demonstrate tuning emission band of CdSe/ZnS semiconductor quantum dots (SQDs) closely-packed in the proximity of Ag nanorod array by dynamically adjusting exciton-plasmon interaction. Large red-shift is observed in two-photon luminescence (TPL) spectra of the SQDs when the longitudinal surface plasmon resonance (LSPR) of Ag nanorod array is adjusted to close to excitation laser wavelength, and the spectral red-shift of TPL reaches as large as 101 meV by increasing excitation power, which is slightly larger than full width at half-maximum of emission spectrum of the SQDs. The observed LSPR-dependent spectral shifting behaviors are explained by a theoretical model of plasmon-enhanced quantum-confined Stark effect. These observations could find the applications in dynamical information processing in active plasmonic and photonic nanodevices.
Asunto(s)
Compuestos de Cadmio/química , Nanotubos/química , Puntos Cuánticos , Compuestos de Selenio/química , Plata/química , Resonancia por Plasmón de Superficie/métodos , Compuestos de Zinc/química , Ensayo de MaterialesRESUMEN
We theoretically investigate the plasmon coupling in metallic nanorod dimers. A pronounced dip is found in the extinction spectrum due to plasmonic Fano resonance, which is induced by destructive interference between the bright dipole plasmon of a short nanorod and the dark quadrupole plasmon of a long nanorod. This Fano interference can also be explained as the coupling between the bright and dark modes both supported by the whole dimer. The Fano resonance can be tuned by adjusting the spatial or spectral separation between two nanorods in the dimer.
Asunto(s)
Dimerización , Nanotubos/química , Fenómenos ÓpticosRESUMEN
ZnO-TiO2 composite films with different Zn/Ti atomic ratios were prepared with radio frequency reactive sputtering method. The Zn percentage composition (f(Zn)) dependent optical band gap and optical nonlinear absorption were investigated using the transmittance spectrum and the Z-scan technique, respectively. The results showed that composite films with f(Zn) in the range of 23.5%-88.3% are poor crystallized and their optical properties are anomalous which exhibit adjustable optical band gap and large optical nonlinear absorption. The optical absorption edge shifted to the blue wavelength direction with the increasing of f(Zn) and reached the minimum value of 285 nm for the sample with f(Zn) = 70.5%, which has the largest direct band gap of 4.30 eV. Further increasing of f(Zn) resulted in the red-shift of the optical absorption edge. The maximum optical nonlinear absorption coefficient of 1.5 x 10(3) cm/GW was also obtained for the same sample with f(Zn) = 70.5%, which is more than 40 times larger than those of pure TiO2 and ZnO films.
RESUMEN
The stimulated amplifications of surface plasmons (SPs) propagating along a single silver nanoring is theoretically investigated by considering the interactions between SPs and activated semiconductor quantum dots (SQDs). Threshold condition for the stimulated amplifications, the SP density as a function of propagation length and the maximum SP density are obtained. The SPs can be nonlinearly amplified when the pumping rate of SQDs is larger than the threshold, and the maximum value of SP density increases linearly with the pumping rate of SQDs.
RESUMEN
We propose the effective dielectric function theory of metal granular composites modified with the metal particle size. The modified theory is used to explain the electrical conductivity, resonant plasmon absorption, and large nonlinear absorption of Au-TiO2 granular composite films with high-density metallic particles and a high electric percolation threshold. It is revealed that the decreasing metal particle size leads to an increasing percolation threshold and large enhancement of optical nonlinearity of the composites.
RESUMEN
Metal-semiconductor heterostructures integrate multiply functionalities beyond those of their individual counterparts. Great efforts have been devoted to synthesize heterostructures with controlled morphologies for the applications ranging from photocatalysis to photonic nanodevices. Beyond the morphologies, the interface between two counterparts also significantly influences the performance of the heterostructures. Here, we synthesize Au/CdSe Janus nanostructures consisting of two half spheres of Au and CdSe separated by a flat and high-quality interface. Au/CdSe with other morphologies could also be prepared by adjusting the overgrowth conditions. The photocatalytic hydrogen generation of the Au/CdSe Janus nanospheres is measured to be 3.9 times higher than that of the controlled samples with CdSe half-shells overgrown on the Au nanospheres. The highly efficient charge transfer across the interface between Au and CdSe contributes to the improved photocatalytic performance. Our studies may find the applications in the design of heterostructures with highly efficient photocatalytic activity.
RESUMEN
We synthesize Au@WS2 hybrid nanobelts and investigate their third-order nonlinear responses mediated by a strong anti-Stokes effect. By using the femtosecond Z-scan technique and tuning the excitation photon energy (Eexc), we find the sign reversals of both nonlinear absorption coefficient ß and nonlinear refractive index γ to be around 1.60 eV, which is prominently higher than the bandgap (1.35 eV) of WS2 bulk owing to the strong anti-Stokes processes around the bandgap of the indirect semiconductors. The saturable absorption and self-defocusing of the WS2 nanobelts are significantly enhanced by the plasmon resonance of the Au nanoparticles when Eexc > 1.60 eV. But the excited state absorption assisted by the anti-Stokes processes and the self-focusing observed at Eexc < 1.60 eV are suppressed by the surface plasmon. Furthermore, by using population rate equations, we theoretically analyze the sign reversals of both ß and γ and reveal the physical mechanism of the unique nonlinear responses of the hybrids with the plasmon resonance and anti-Stokes effect. These observations enrich the understanding of the nonlinear processes and interactions between the plasmon and exciton and are helpful for developing nonlinear optical nanodevices.
RESUMEN
Strong couplings between molecular excitons and metal plasmons bring advantages to effectively manipulate the optical properties of hybrid systems, including both absorption and fluorescence. In contrast to absorption behaviours, which have been quite well understood and can be categorized into different regimes such as Fano dip and Rabi splitting, the characteristics of fluorescence in strongly coupled hybrids remain largely unexplored. Quenching instead of the enhancement of fluorescence is usually observed in the corresponding experiments, and a theoretical model to deal with this phenomenon is still lacking. Herein, we demonstrate a largely enhanced fluorescence in a hybrid system with Cy5 dye molecules strongly coupled to Ag nanoparticle films, signified by the huge Rabi splitting absorption spectra. The plexciton Rabi splitting of the hybrids can be tuned from 320 meV to as large as 750 meV by adjusting both plasmon strength and molecular concentration. Moreover, when the excitation and emission wavelengths are respectively tuned to be resonant with the two Rabi peaks, the hybrid acting as a plexcitonic dual resonant antenna exhibits an enhanced fluorescence 44 times larger than that of the free dye molecule. We also develop a theoretical model to simultaneously study the characteristics of both the absorption and emission spectra, including the peak shifting and strength. These findings offer a new strategy to design and fabricate plexcitonic devices with tunable optical responses and efficient fluorescence.
RESUMEN
In this study, we synthesized CdS/(Au-ReS2) nanospheres that have highly efficient photocatalytic hydrogen production activity induced by dielectric-plasmon hybrid antenna resonance. As the diameter (D) of ReS2 nanospheres consisting of 2D nanosheets increases from 114 ± 11 to 218 ± 25 nm, the resonance wavelength of the ReS2 dielectric antenna is tuned from 380 to 620 nm and the hydrogen production rate for the CdS/(Au-ReS2) nanospheres increases by more than 1.85 times and reaches a value as high as 3060 µmol g-1 h-1, with a 9% weight percentage of Au. Due to the enhancements of the local electromagnetic field and excitation energy transfer by the ReS2-Au dielectric-plasmon hybrid antenna, the hydrogen production rate for the CdS/(Au-ReS2) nanospheres (D = 218 ± 25 nm) is 797, 319, 105 and 12 times larger than that for pure ReS2, Au-ReS2, CdS, and CdS-ReS2, respectively. Additionally, the persistence and reusability measurements indicate a favorable stability of CdS/(Au-ReS2). These results provide a strategy to prepare a new class of dielectric-plasmon hybrid antennas consisting of 2D materials and metal nanoparticles, which have promise in applications ranging from photocatalysis to nonlinear optics.
RESUMEN
We theoretically study the gain-assisted double plasmonic resonances to enhance second harmonic generation (SHG) in a centrosymmetric multilayered silver-dielectric-gold-dielectric (SDGD) nanostructure. Introducing gain media into the dielectric layers can not only compensate the dissipation and lead to giant amplification of surface plasmons (SPs), but also excite local quadrupolar plasmon which can boost SHG by mode matching. Specifically, as the quadrupolar mode dominates SHG in our nanostructure, under the mode matching condition, the intensity of second harmonic near-field can be enhanced by 4.43 × 102 and 1.21 × 105 times when the super-resonance is matched only at the second harmonic (SH) frequency or fundamental frequency, respectively. Moreover, the intensity of SHG near-field is enhanced by as high as 6.55 × 107 times when the nanostructure is tuned to double super-resonances at both fundamental and SH frequencies. The findings in this work have potential applications in the design of nanosensors and nanolasers.
RESUMEN
We report a plasmon-assisted growth of metal and semiconductor onto the tips of Ag nanotriangles (AgNTs) under light irradiation. The site-selective growth of Ag onto AgNTs are firstly demonstrated on the copper grids and amine-coated glass slides. As the irradiation time increases, microscopic images indicate that AgNTs gradually touch with each other and finally "weld" tip-to-tip together into the branched chains. Meanwhile, the redshift of plasmon band is observed in the extinction spectra, which agrees well the growth at the tips of AgNTs and the decrease of the gaps between the adjacent nanotriangles. We also synthesize AgNT-Cu2O nanocomposites by using a photochemical method and find that the Cu2O nanoparticles preferably grow on the tips of AgNTs. The site-selective growth of Ag and Cu2O is interpreted by the local field concentration at the tips of AgNTs induced by surface plasmon resonance under light excitation.
RESUMEN
The "artificial magnetic" resonance in plasmonic metamolecules extends the potential application of magnetic resonance from terahertz to optical frequency bypassing the problem of magnetic response saturation by replacing the conduction current with the ring displacement current. So far, the magnetic Fano resonance-induced nonlinearity enhancement in plasmonic metamolecule rings has not been reported. Here, we use the magnetic Fano resonance to enhance second-harmonic generation (SHG) in plasmonic metamolecule rings. In the spectra of the plasmonic metamolecule, an obvious Fano dip appears in the scattering cross section, while the dip does not appear in the absorption cross section. It indicates that at the Fano dip the radiative losses are suppressed, while the optical absorption efficiency is at a high level. The largely enhanced SHG signal is observed as the excitation wavelength is adjusted at the magnetic Fano dip of the plasmonic metamolecule rings with stable and tunable magnetic responses. We also compare the magnetic Fano dip with the electric case to show its advantages in enhancing the fundamental and second harmonic responses. Our research provides a new thought for enhancing optical nonlinear processes by magnetic modes.
RESUMEN
Excitation-dependent fluorophores (EDFs) have been attracted increasing attention owing to their high tunability of emissions and prospective applications ranging from multicolor patterning to bio-imaging. Here, we report tunable fluorescence with quenching dip induced by strong coupling of exciton and plasmon in the hybrid nanostructure of CTAB* EDFs and gold nanoparticles (AuNPs). The quenching dip in the fluorescence spectrum is tuned by adjusting excitation wavelength as well as plasmon resonance and concentration of AuNPs. The observed excitation-dependent emission spectra with quenching dip are theoretically reproduced and revealed to be induced by resonant energy transfer from multilevel EDFs with wider width channels to plasmonic AuNPs. These findings provide a new approach to prepare EDF molecules and a strategy to modulate fluorescence spectrum via exciton-to-plasmon energy transfer.
RESUMEN
We present that surface plasmon polariton, side-coupled to a gain-assisted nanoresonator where the absorption is overcompensated, exhibits a prominent phase shift up to π maintaining the flat unity transmission across the whole broad spectra. Bandwidth of this plasmonic phase shift can be controlled by adjusting the distance between the plasmonic waveguide and the nanoresonator. For a moderate distance, within bandwidth of 100 GHz, the phase shift and transmission are constantly maintained. The plasmonic phase can be shift-keying-modulated by a pumping signal in the gain-assisted nanoresonator. A needed length in our approach is of nanoscale while already suggested types of plasmonic phase modulator are of micrometer scale in length. The energy consumption per bit, which benefits from the nano size of this device, is ideally low on the order of 10 fJ/bit. The controllable plasmonic phase shift can find applications in nanoscale Mach-Zehnder interferometers and other phase-sensitive devices as well as directly in plasmonic phase shift keying modulators.
RESUMEN
Doping with intentional impurities is an intriguing way to tune the properties of semiconductor nanocrystals. However, the synthesis of some specific doped semiconductor nanocrystals remains a challenge and the doping mechanism in this strongly confined system is still not clearly understood. In this work, we report, for the first time, the synthesis of stable and water-soluble Ag-doped CdTe semiconductor quantum dots (SQDs) via a facile aqueous approach. Experimental characterization demonstrated the efficient doping of the Ag impurities into the CdTe SQDs with an appropriate reaction time. By doping 0.3% Ag impurities, the Stokes shift is decreased by 120 meV, the fluorescence intensity is enhanced more than 3 times, the radiative rate is enhanced 4.2 times, and the non-radiative rate is efficiently suppressed. These observations reveal that the fluorescence enhancement in Ag-doped CdTe SQDs is mainly attributed to the minimization of surface defects, filling of the trap states, and the enhancement of the radiative rate by the silver dopants. Our results suggest that the silver doping is an efficient method for tuning the optical properties of the CdTe SQDs.