Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Physiol Rev ; 98(1): 3-58, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29167330

RESUMEN

Endothelial cells (ECs) are more than inert blood vessel lining material. Instead, they are active players in the formation of new blood vessels (angiogenesis) both in health and (life-threatening) diseases. Recently, a new concept arose by which EC metabolism drives angiogenesis in parallel to well-established angiogenic growth factors (e.g., vascular endothelial growth factor). 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3-driven glycolysis generates energy to sustain competitive behavior of the ECs at the tip of a growing vessel sprout, whereas carnitine palmitoyltransferase 1a-controlled fatty acid oxidation regulates nucleotide synthesis and proliferation of ECs in the stalk of the sprout. To maintain vascular homeostasis, ECs rely on an intricate metabolic wiring characterized by intracellular compartmentalization, use metabolites for epigenetic regulation of EC subtype differentiation, crosstalk through metabolite release with other cell types, and exhibit EC subtype-specific metabolic traits. Importantly, maladaptation of EC metabolism contributes to vascular disorders, through EC dysfunction or excess angiogenesis, and presents new opportunities for anti-angiogenic strategies. Here we provide a comprehensive overview of established as well as newly uncovered aspects of EC metabolism.


Asunto(s)
Células Endoteliales/metabolismo , Neovascularización Patológica/metabolismo , Neovascularización Fisiológica/fisiología , Enfermedades Vasculares/metabolismo , Animales , Epigénesis Genética/fisiología , Homeostasis/fisiología , Humanos
2.
Angiogenesis ; 23(3): 493-513, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32506201

RESUMEN

Angiogenesis, the formation of new blood vessels by endothelial cells, is a finely tuned process relying on the balance between promoting and repressing signalling pathways. Among these, Notch signalling is critical in ensuring appropriate response of endothelial cells to pro-angiogenic stimuli. However, the downstream targets and pathways effected by Delta-like 4 (DLL4)/Notch signalling and their subsequent contribution to angiogenesis are not fully understood. We found that the Rho GTPase, RHOQ, is induced by DLL4 signalling and that silencing RHOQ results in abnormal sprouting and blood vessel formation both in vitro and in vivo. Loss of RHOQ greatly decreased the level of Notch signalling, conversely overexpression of RHOQ promoted Notch signalling. We describe a new feed-forward mechanism regulating DLL4/Notch signalling, whereby RHOQ is induced by DLL4/Notch and is essential for the NICD nuclear translocation. In the absence of RHOQ, Notch1 becomes targeted for degradation in the autophagy pathway and NICD is sequestered from the nucleus and targeted for degradation in lysosomes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Unión al Calcio/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Neovascularización Fisiológica , Receptores Notch/metabolismo , Transducción de Señal , Proteínas de Unión al GTP rho/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Unión al Calcio/genética , Humanos , Dominios Proteicos , Receptores Notch/genética , Proteínas de Unión al GTP rho/genética
3.
Br J Cancer ; 122(2): 258-265, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31819193

RESUMEN

BACKGROUND: Epidemiological studies suggest that metformin may reduce the incidence of cancer in patients with diabetes and multiple late phase clinical trials assessing the potential of repurposing this drug are underway. Transcriptomic profiling of tumour samples is an excellent tool to understand drug bioactivity, identify candidate biomarkers and assess for mechanisms of resistance to therapy. METHODS: Thirty-six patients with untreated primary breast cancer were recruited to a window study and transcriptomic profiling of tumour samples carried out before and after metformin treatment. RESULTS: Multiple genes that regulate fatty acid oxidation were upregulated at the transcriptomic level and there was a differential change in expression between two previously identified cohorts of patients with distinct metabolic responses. Increase in expression of a mitochondrial fatty oxidation gene composite signature correlated with change in a proliferation gene signature. In vitro assays showed that, in contrast to previous studies in models of normal cells, metformin reduces fatty acid oxidation with a subsequent accumulation of intracellular triglyceride, independent of AMPK activation. CONCLUSIONS: We propose that metformin at clinical doses targets fatty acid oxidation in cancer cells with implications for patient selection and drug combinations. CLINICAL TRIAL REGISTRATION: NCT01266486.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Ácidos Grasos/metabolismo , Metformina/farmacología , Proteínas Quinasas/genética , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Femenino , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Xenoinjertos , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Ratones , Mitocondrias/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Transcriptoma/efectos de los fármacos
4.
Pharmacol Rev ; 68(3): 872-87, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27363442

RESUMEN

Excessive angiogenesis (i.e., the formation of new blood vessels) contributes to different pathologies, among them cancer and ocular disorders. Conversely, dysfunction of endothelial cells (ECs) contributes to cardiovascular complications, as is the case in diabetes. Inhibition of pathologic angiogenesis in blinding eye disease and cancer by targeting growth factors such as vascular endothelial growth factor has become an accepted therapeutic strategy. However, recent studies also unveiled the emerging importance of EC metabolism in controlling angiogenesis. In this overview, we will discuss recent insights in the metabolic regulation of angiogenesis, focusing on the best-characterized metabolic pathways, and highlight deregulation of EC metabolism in cancer and diabetes. We will give an outlook on how targeting EC metabolism can be used for blocking pathologic angiogenesis and for normalizing EC dysfunction.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Terapia Molecular Dirigida/métodos , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Animales , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología , Endotelio Vascular/patología , Humanos , Neoplasias/irrigación sanguínea , Neoplasias/tratamiento farmacológico , Neovascularización Patológica/genética , Transducción de Señal/efectos de los fármacos
5.
J Biol Chem ; 289(33): 23168-23176, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24939870

RESUMEN

Fatty acid-binding protein 4 (FABP4) is an adipogenic protein and is implicated in atherosclerosis, insulin resistance, and cancer. In endothelial cells, FABP4 is induced by VEGFA, and inhibition of FABP4 blocks most of the VEGFA effects. We investigated the DLL4-NOTCH-dependent regulation of FABP4 in human umbilical vein endothelial cells by gene/protein expression and interaction analyses following inhibitor treatment and RNA interference. We found that FABP4 is directly induced by NOTCH. Stimulation of NOTCH signaling with human recombinant DLL4 led to FABP4 induction, independently of VEGFA. FABP4 induction by VEGFA was reduced by blockade of DLL4 binding to NOTCH or inhibition of NOTCH signal transduction. Chromatin immunoprecipitation of the NOTCH intracellular domain showed increased binding to two specific regions in the FABP4 promoter. The induction of FABP4 gene expression was dependent on the transcription factor FOXO1, which was essential for basal expression of FABP4, and FABP4 up-regulation following stimulation of the VEGFA and/or the NOTCH pathway. Thus, we show that the DLL4-NOTCH pathway mediates endothelial FABP4 expression. This indicates that induction of the angiogenesis-restricting DLL4-NOTCH can have pro-angiogenic effects via this pathway. It also provides a link between DLL4-NOTCH and FOXO1-mediated regulation of endothelial gene transcription, and it shows that DLL4-NOTCH is a nodal point in the integration of pro-angiogenic and metabolic signaling in endothelial cells. This may be crucial for angiogenesis in the tumor environment.


Asunto(s)
Proteínas de Unión a Ácidos Grasos/biosíntesis , Regulación de la Expresión Génica/fisiología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Neovascularización Fisiológica/fisiología , Transducción de Señal/fisiología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Proteínas de Unión al Calcio , Proteínas de Unión a Ácidos Grasos/genética , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/irrigación sanguínea , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Regiones Promotoras Genéticas/fisiología , Receptores Notch/genética , Receptores Notch/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética
6.
Commun Biol ; 7(1): 618, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783087

RESUMEN

Endothelial cells (ECs) are highly glycolytic, but whether they generate glycolytic intermediates via gluconeogenesis (GNG) in glucose-deprived conditions remains unknown. Here, we report that glucose-deprived ECs upregulate the GNG enzyme PCK2 and rely on a PCK2-dependent truncated GNG, whereby lactate and glutamine are used for the synthesis of lower glycolytic intermediates that enter the serine and glycerophospholipid biosynthesis pathways, which can play key roles in redox homeostasis and phospholipid synthesis, respectively. Unexpectedly, however, even in normal glucose conditions, and independent of its enzymatic activity, PCK2 silencing perturbs proteostasis, beyond its traditional GNG role. Indeed, PCK2-silenced ECs have an impaired unfolded protein response, leading to accumulation of misfolded proteins, which due to defective proteasomes and impaired autophagy, results in the accumulation of protein aggregates in lysosomes and EC demise. Ultimately, loss of PCK2 in ECs impaired vessel sprouting. This study identifies a role for PCK2 in proteostasis beyond GNG.


Asunto(s)
Células Endoteliales , Gluconeogénesis , Fosfoenolpiruvato Carboxiquinasa (GTP) , Proteostasis , Gluconeogénesis/genética , Humanos , Células Endoteliales/metabolismo , Fosfoenolpiruvato Carboxiquinasa (GTP)/metabolismo , Fosfoenolpiruvato Carboxiquinasa (GTP)/genética , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Glucosa/metabolismo , Autofagia , Respuesta de Proteína Desplegada , Fosfoenolpiruvato Carboxiquinasa (ATP)
7.
Cell Metab ; 28(6): 881-894.e13, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30146488

RESUMEN

Little is known about the metabolism of quiescent endothelial cells (QECs). Nonetheless, when dysfunctional, QECs contribute to multiple diseases. Previously, we demonstrated that proliferating endothelial cells (PECs) use fatty acid ß-oxidation (FAO) for de novo dNTP synthesis. We report now that QECs are not hypometabolic, but upregulate FAO >3-fold higher than PECs, not to support biomass or energy production but to sustain the tricarboxylic acid cycle for redox homeostasis through NADPH regeneration. Hence, endothelial loss of FAO-controlling CPT1A in CPT1AΔEC mice promotes EC dysfunction (leukocyte infiltration, barrier disruption) by increasing endothelial oxidative stress, rendering CPT1AΔEC mice more susceptible to LPS and inflammatory bowel disease. Mechanistically, Notch1 orchestrates the use of FAO for redox balance in QECs. Supplementation of acetate (metabolized to acetyl-coenzyme A) restores endothelial quiescence and counters oxidative stress-mediated EC dysfunction in CPT1AΔEC mice, offering therapeutic opportunities. Thus, QECs use FAO for vasculoprotection against oxidative stress-prone exposure.


Asunto(s)
Carnitina O-Palmitoiltransferasa/metabolismo , Metabolismo Energético , Ácidos Grasos/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , NADP/metabolismo , Receptor Notch1/metabolismo , Animales , Proliferación Celular , Células HEK293 , Homeostasis , Humanos , Ratones , Ratones Endogámicos C57BL , Oxidación-Reducción , Estrés Oxidativo
8.
Nat Rev Cancer ; 22(4): 194, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35228674
12.
Nat Rev Cancer ; 21(3): 142, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33462502

Asunto(s)
Melanoma , Humanos , Péptidos
13.
Nat Rev Cancer ; 21(12): 745, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34702983

Asunto(s)
Amoníaco , Humanos
14.
Nat Rev Cancer ; 21(6): 342-343, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33859397
16.
Nat Rev Cancer ; 21(7): 412, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34083782
17.
Nat Rev Cancer ; 21(7): 412, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34083783
18.
Nat Rev Cancer ; 21(8): 479, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34172965
19.
Nat Rev Cancer ; 21(9): 539, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34294891
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda