Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Sensors (Basel) ; 20(16)2020 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-32824708

RESUMEN

Epileptic seizure is a sudden alteration of behavior owing to a temporary change in the electrical functioning of the brain. There is an urgent demand for an automatic epilepsy detection system using electroencephalography (EEG) for clinical application. In this paper, the EEG signal is divided into short time frames. Discrete wavelet transform is used to decompose each frame into a number of subbands. Different entropies as well as a group of features with which to characterize the spike events are extracted from each subband signal of an EEG frame. The features extracted from individual subbands are concatenated, yielding a high-dimensional feature vector. A discriminative subset of features is selected from the feature vector using a graph eigen decomposition (GED)-based approach. Thus, the reduced number of features obtained is effective for differentiating the underlying characteristics of EEG signals that indicate seizure events and those that indicate nonseizure events. The GED method ranks the features according to their contribution to correct classification. The selected features are used to classify seizure and nonseizure EEG signals using a feedforward neural network (FfNN). The performance of the proposed method is evaluated by conducting various experiments with a standard dataset obtained from the University of Bonn. The experimental results show that the proposed seizure-detection scheme achieves a classification accuracy of 99.55%, which is higher than that of state-of-the-art methods. The efficiency of FfNN is compared with linear discriminant analysis and support vector machine classifiers, which have classification accuracies of 98.72% and 99.39%, respectively. Hence, the proposed method is confirmed as a potential marker for EEG-based seizure detection.


Asunto(s)
Electroencefalografía , Epilepsia , Procesamiento de Señales Asistido por Computador , Algoritmos , Epilepsia/diagnóstico , Humanos , Convulsiones/diagnóstico , Máquina de Vectores de Soporte , Análisis de Ondículas
2.
Brain Sci ; 14(5)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38790441

RESUMEN

Electroencephalography (EEG) is effectively employed to describe cognitive patterns corresponding to different tasks of motor functions for brain-computer interface (BCI) implementation. Explicit information processing is necessary to reduce the computational complexity of practical BCI systems. This paper presents an entropy-based approach to select effective EEG channels for motor imagery (MI) classification in brain-computer interface (BCI) systems. The method identifies channels with higher entropy scores, which is an indication of greater information content. It discards redundant or noisy channels leading to reduced computational complexity and improved classification accuracy. High entropy means a more disordered pattern, whereas low entropy means a less disordered pattern with less information. The entropy of each channel for individual trials is calculated. The weight of each channel is represented by the mean entropy of the channel over all the trials. A set of channels with higher mean entropy are selected as effective channels for MI classification. A limited number of sub-band signals are created by decomposing the selected channels. To extract the spatial features, the common spatial pattern (CSP) is applied to each sub-band space of EEG signals. The CSP-based features are used to classify the right-hand and right-foot MI tasks using a support vector machine (SVM). The effectiveness of the proposed approach is validated using two publicly available EEG datasets, known as BCI competition III-IV(A) and BCI competition IV-I. The experimental results demonstrate that the proposed approach surpasses cutting-edge techniques.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda