Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Expert Syst Appl ; 211: 118576, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36062267

RESUMEN

In the last few decades, several epidemic diseases have been introduced. In some cases, doctors and medical physicians are facing difficulties in identifying these diseases correctly. A machine can perform some of these identification tasks more accurately than a human if it is trained correctly. With time, the number of medical data is increasing. A machine can analyze this medical data and extract knowledge from this data, which can help doctors and medical physicians. This study proposed a lightweight convolutional neural network (CNN) named ChestX-ray6 that automatically detects pneumonia, COVID19, cardiomegaly, lung opacity, and pleural from digital chest x-ray images. Here multiple databases have been combined, containing 9,514 chest x-ray images of normal and other five diseases. The lightweight ChestX-ray6 model achieved an accuracy of 80% for the detection of six diseases. The ChestX-ray6 model has been saved and used for binary classification of normal and pneumonia patients to reveal the model's generalization power. The pre-trained ChestX-ray6 model has achieved an accuracy and recall of 97.94% and 98% for binary classification, which outweighs the state-of-the-art (SOTA) models.

2.
Expert Syst Appl ; 229: 120528, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37274610

RESUMEN

Numerous epidemic lung diseases such as COVID-19, tuberculosis (TB), and pneumonia have spread over the world, killing millions of people. Medical specialists have experienced challenges in correctly identifying these diseases due to their subtle differences in Chest X-ray images (CXR). To assist the medical experts, this study proposed a computer-aided lung illness identification method based on the CXR images. For the first time, 17 different forms of lung disorders were considered and the study was divided into six trials with each containing two, two, three, four, fourteen, and seventeen different forms of lung disorders. The proposed framework combined robust feature extraction capabilities of a lightweight parallel convolutional neural network (CNN) with the classification abilities of the extreme learning machine algorithm named CNN-ELM. An optimistic accuracy of 90.92% and an area under the curve (AUC) of 96.93% was achieved when 17 classes were classified side by side. It also accurately identified COVID-19 and TB with 99.37% and 99.98% accuracy, respectively, in 0.996 microseconds for a single image. Additionally, the current results also demonstrated that the framework could outperform the existing state-of-the-art (SOTA) models. On top of that, a secondary conclusion drawn from this study was that the prospective framework retained its effectiveness over a range of real-world environments, including balanced-unbalanced or large-small datasets, large multiclass or simple binary class, and high- or low-resolution images. A prototype Android App was also developed to establish the potential of the framework in real-life implementation.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda