Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Immunol ; 200(1): 286-294, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29180488

RESUMEN

Myeloid-derived suppressor cells (MDSCs) are major regulators of T cell responses in several pathological conditions. Whether MDSCs increase and influence T cell responses in temporary inflammation, such as after vaccine administration, is unknown. Using the rhesus macaque model, which is critical for late-stage vaccine testing, we demonstrate that monocytic (M)-MDSCs and polymorphonuclear (PMN)-MDSCs can be detected using several of the markers used in humans. However, whereas rhesus M-MDSCs lacked expression of CD33, PMN-MDSCs were identified as CD33+ low-density neutrophils. Importantly, both M-MDSCs and PMN-MDSCs showed suppression of T cell proliferation in vitro. The frequency of circulating MDSCs rapidly and transiently increased 24 h after vaccine administration. M-MDSCs infiltrated the vaccine injection site, but not vaccine-draining lymph nodes. This was accompanied by upregulation of genes relevant to MDSCs such as arginase-1, IDO1, PDL1, and IL-10 at the injection site. MDSCs may therefore play a role in locally maintaining immune balance during vaccine-induced inflammation.


Asunto(s)
Subtipo H10N8 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Células Supresoras de Origen Mieloide/inmunología , Neutrófilos/inmunología , Infecciones por Orthomyxoviridae/inmunología , Linfocitos T/inmunología , Animales , Arginasa/genética , Antígeno B7-H1/genética , Proliferación Celular , Regulación de la Expresión Génica , Humanos , Tolerancia Inmunológica , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Interleucina-10/genética , Macaca mulatta , Análisis por Micromatrices , Lectina 3 Similar a Ig de Unión al Ácido Siálico/metabolismo , Vacunación
2.
Mol Ther ; 25(6): 1316-1327, 2017 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-28457665

RESUMEN

Recently, the World Health Organization confirmed 120 new human cases of avian H7N9 influenza in China resulting in 37 deaths, highlighting the concern for a potential pandemic and the need for an effective, safe, and high-speed vaccine production platform. Production speed and scale of mRNA-based vaccines make them ideally suited to impede potential pandemic threats. Here we show that lipid nanoparticle (LNP)-formulated, modified mRNA vaccines, encoding hemagglutinin (HA) proteins of H10N8 (A/Jiangxi-Donghu/346/2013) or H7N9 (A/Anhui/1/2013), generated rapid and robust immune responses in mice, ferrets, and nonhuman primates, as measured by hemagglutination inhibition (HAI) and microneutralization (MN) assays. A single dose of H7N9 mRNA protected mice from a lethal challenge and reduced lung viral titers in ferrets. Interim results from a first-in-human, escalating-dose, phase 1 H10N8 study show very high seroconversion rates, demonstrating robust prophylactic immunity in humans. Adverse events (AEs) were mild or moderate with only a few severe and no serious events. These data show that LNP-formulated, modified mRNA vaccines can induce protective immunogenicity with acceptable tolerability profiles.


Asunto(s)
Subtipo H10N8 del Virus de la Influenza A/genética , Subtipo H10N8 del Virus de la Influenza A/inmunología , Subtipo H7N9 del Virus de la Influenza A/genética , Subtipo H7N9 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae/prevención & control , ARN Mensajero/genética , Animales , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Línea Celular , Modelos Animales de Enfermedad , Femenino , Hurones , Expresión Génica , Humanos , Inmunización , Esquemas de Inmunización , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/efectos adversos , Macaca fascicularis , Masculino , Ratones , Protaminas , ARN Mensajero/administración & dosificación , ARN Mensajero/farmacocinética , ARN Viral , Distribución Tisular
3.
Mol Ther ; 25(12): 2635-2647, 2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-28958578

RESUMEN

mRNA vaccines are rapidly emerging as a powerful platform for infectious diseases because they are well tolerated, immunogenic, and scalable and are built on precise but adaptable antigen design. We show that two immunizations of modified non-replicating mRNA encoding influenza H10 hemagglutinin (HA) and encapsulated in lipid nanoparticles (LNP) induce protective HA inhibition titers and H10-specific CD4+ T cell responses after intramuscular or intradermal delivery in rhesus macaques. Administration of LNP/mRNA induced rapid and local infiltration of neutrophils, monocytes, and dendritic cells (DCs) to the site of administration and the draining lymph nodes (LNs). While these cells efficiently internalized LNP, mainly monocytes and DCs translated the mRNA and upregulated key co-stimulatory receptors (CD80 and CD86). This coincided with upregulation of type I IFN-inducible genes, including MX1 and CXCL10. The innate immune activation was transient and resulted in priming of H10-specific CD4+ T cells exclusively in the vaccine-draining LNs. Collectively, this demonstrates that mRNA-based vaccines induce type-I IFN-polarized innate immunity and, when combined with antigen production by antigen-presenting cells, lead to generation of potent vaccine-specific responses.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , ARN Mensajero/genética , ARN Mensajero/inmunología , Vacunas/inmunología , Animales , Células Presentadoras de Antígenos/metabolismo , Citocinas/metabolismo , Expresión Génica , Inmunización , Inmunofenotipificación , Vacunas contra la Influenza/inmunología , Inyecciones Intradérmicas , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Macaca mulatta , Fenotipo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Vacunas/administración & dosificación
5.
Mol Ther Nucleic Acids ; 35(1): 102083, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38161733

RESUMEN

The mRNA vaccine route from injection site to critical immunologic tissues, as well as the localization of protein antigen following intramuscular (i.m.) administration, is crucial to generating an effective immune response. Here, we quantified mRNA at the injection site, lymph nodes, and in select tissues. mRNA was primarily present 24 h after administration and then rapidly degraded from local and systemic tissues. Histological analyses of mRNA and expressed protein at the site of administration and in the lymph nodes following i.m. administration of our vaccine in rodents and nonhuman primates (NHPs) were completed, and mRNA and protein expression were detected in tissue resident and infiltrating immune cells at the injection site. In addition, high levels of protein expression were observed within subcapsular and medullary sinus macrophages in draining lymph nodes. More important, results were similar between rodents and NHPs, indicating cross-species similarities.

6.
Antibodies (Basel) ; 11(4)2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36412833

RESUMEN

Monoclonal antibodies have been used successfully as recombinant protein therapy; however, for HIV, multiple broadly neutralizing antibodies may be necessary. We used the mRNA-LNP platform for in vivo co-expression of 3 broadly neutralizing antibodies, PGDM1400, PGT121, and N6, directed against the HIV-1 envelope protein. mRNA-encoded HIV-1 antibodies were engineered as single-chain Fc (scFv-Fc) to overcome heavy- and light-chain mismatch. In vitro neutralization breadth and potency of the constructs were compared to their parental IgG form. We assessed the ability of these scFv-Fcs to be expressed individually and in combination in vivo, and neutralization and pharmacokinetics were compared to the corresponding full-length IgGs. Single-chain PGDM1400 and PGT121 exhibited neutralization potency comparable to parental IgG, achieving peak systemic concentrations ≥ 30.81 µg/mL in mice; full-length N6 IgG achieved a peak concentration of 974 µg/mL, but did not tolerate single-chain conversion. The mRNA combination encoding full-length N6 IgG and single-chain PGDM1400 and PGT121 was efficiently expressed in mice, achieving high systemic concentration and desired neutralization potency. Analysis of mice sera demonstrated each antibody contributed towards neutralization of multiple HIV-1 pseudoviruses. Together, these data show that the mRNA-LNP platform provides a promising approach for antibody-based HIV treatment and is well-suited for development of combination therapeutics.

7.
J Control Release ; 335: 237-246, 2021 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-34019945

RESUMEN

Lipid nanoparticles (LNP) are effective delivery vehicles for messenger RNA (mRNA) and have shown promise for vaccine applications. Yet there are no published reports detailing how LNP biophysical properties can impact vaccine performance. In our hands, a retrospective analysis of mRNA LNP vaccine in vivo studies revealed a relationship between LNP particle size and immunogenicity in mice using LNPs of various compositions. To further investigate this, we designed a series of studies to systematically change LNP particle size without altering lipid composition and evaluated biophysical properties and immunogenicity of the resulting LNPs. While small diameter LNPs were substantially less immunogenic in mice, all particle sizes tested yielded a robust immune response in non-human primates (NHP).


Asunto(s)
Inmunogenicidad Vacunal , Nanopartículas , Animales , Humanos , Lípidos , Ratones , ARN Mensajero , Estudios Retrospectivos
9.
Mol Ther Nucleic Acids ; 15: 1-11, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30785039

RESUMEN

mRNA vaccines have the potential to tackle many unmet medical needs that are unable to be addressed with conventional vaccine technologies. A potent and well-tolerated delivery technology is integral to fully realizing the potential of mRNA vaccines. Pre-clinical and clinical studies have demonstrated that mRNA delivered intramuscularly (IM) with first-generation lipid nanoparticles (LNPs) generates robust immune responses. Despite progress made over the past several years, there remains significant opportunity for improvement, as the most advanced LNPs were designed for intravenous (IV) delivery of siRNA to the liver. Here, we screened a panel of proprietary biodegradable ionizable lipids for both expression and immunogenicity in a rodent model when administered IM. A subset of compounds was selected and further evaluated for tolerability, immunogenicity, and expression in rodents and non-human primates (NHPs). A lead formulation was identified that yielded a robust immune response with improved tolerability. More importantly for vaccines, increased innate immune stimulation driven by LNPs does not equate to increased immunogenicity, illustrating that mRNA vaccine tolerability can be improved without affecting potency.

10.
Vaccine ; 36(12): 1689-1699, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29456015

RESUMEN

A cytomegalovirus (CMV) vaccine that is effective at preventing congenital infection and reducing CMV disease in transplant patients remains a high priority as no approved vaccines exist. While the precise correlates of protection are unknown, neutralizing antibodies and antigen-specific T cells have been implicated in controlling infection. We demonstrate that the immunization of mice and nonhuman primates (NHPs) with lipid nanoparticles (LNP) encapsulating modified mRNA encoding CMV glycoproteins gB and pentameric complex (PC) elicit potent and durable neutralizing antibody titers. Since the protective correlates in pregnant women and transplant recipients may differ, we developed an additional mRNA vaccine expressing the immunodominant CMV T cell antigen pp65. Administration of pp65 vaccine with PC and gB elicited robust multi-antigenic T cell responses in mice. Our data demonstrate that mRNA/LNP is a versatile platform that enables the development of vaccination strategies that could prevent CMV infection and consequent disease in different target populations.


Asunto(s)
Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/prevención & control , Vacunas contra Citomegalovirus/inmunología , Citomegalovirus/inmunología , Inmunidad Celular , Inmunidad Humoral , Vacunas Sintéticas/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Línea Celular , Citocinas/metabolismo , Citomegalovirus/genética , Vacunas contra Citomegalovirus/genética , Femenino , Expresión Génica , Humanos , Ratones , Pruebas de Neutralización , Linfocitos T/inmunología , Linfocitos T/metabolismo , Vacunación , Vacunas Sintéticas/genética
11.
Methods Mol Biol ; 1494: 1-13, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27718182

RESUMEN

Adjuvants are included in sub-unit or recombinant vaccines to enhance the potency of poorly immunogenic antigens. Adjuvant discovery is as complex as it is a multidiscplinary intersection of formulation science, immunology, toxicology, and biology. Adjuvants such as alum, which have been in use for the past 90 years, have illustrated that adjuvant research is a methodical process. As science advances, new analytical tools are developed which allows us to delve deeper into the various mechanisms that generates a potent immune response. Additionally, these new techniques help the field learn about our existing vaccines and what makes them safe, and effective, allowing us to leverage that in the next generation of vaccines. Our goal in this chapter is to define the concept, need, and mechanism of adjuvants in the vaccine field while describing its history, present use, and future prospects. More details on individual adjuvants and their formulation, development, mechanism, and use will be covered in depth in the next chapters.


Asunto(s)
Adyuvantes Inmunológicos , Compuestos de Alumbre , Vacunas , Adyuvantes Inmunológicos/historia , Adyuvantes Inmunológicos/uso terapéutico , Compuestos de Alumbre/historia , Compuestos de Alumbre/uso terapéutico , Animales , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Vacunas/historia , Vacunas/uso terapéutico
12.
Front Immunol ; 8: 1539, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29181005

RESUMEN

Modified mRNA vaccines have developed into an effective and well-tolerated vaccine platform that offers scalable and precise antigen production. Nevertheless, the immunological events leading to strong antibody responses elicited by mRNA vaccines are largely unknown. In this study, we demonstrate that protective levels of antibodies to hemagglutinin were induced after two immunizations of modified non-replicating mRNA encoding influenza H10 encapsulated in lipid nanoparticles (LNP) in non-human primates. While both intradermal (ID) and intramuscular (IM) administration induced protective titers, ID delivery generated this response more rapidly. Circulating H10-specific memory B cells expanded after each immunization, along with a transient appearance of plasmablasts. The memory B cell pool waned over time but remained detectable throughout the 25-week study. Following prime immunization, H10-specific plasma cells were found in the bone marrow and persisted over time. Germinal centers were formed in vaccine-draining lymph nodes along with an increase in circulating H10-specific ICOS+ PD-1+ CXCR3+ T follicular helper cells, a population shown to correlate with high avidity antibody responses after seasonal influenza vaccination in humans. Collectively, this study demonstrates that mRNA/LNP vaccines potently induce an immunological repertoire associated with the generation of high magnitude and quality antibodies.

13.
Eur J Pharm Biopharm ; 94: 220-8, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25998700

RESUMEN

A major impediment to economical, worldwide vaccine distribution is the requirement for a "cold chain" to preserve antigenicity. We addressed this problem using a model human papillomavirus (HPV) vaccine stabilized by immobilizing HPV16 L1 capsomeres, i.e., pentameric subunits of the virus capsid, within organic glasses formed by lyophilization. Lyophilized glass and liquid vaccine formulations were incubated at 50°C for 12weeks, and then analyzed for retention of capsomere conformational integrity and the ability to elicit neutralizing antibody responses after immunization of BALB/c mice. Capsomeres in glassy-state vaccines retained tertiary and quaternary structure, and critical conformational epitopes. Moreover, glassy formulations adjuvanted with aluminum hydroxide or aluminum hydroxide and glycopyranoside lipid A were not only as immunogenic as the commercially available HPV vaccine Cervarix®, but also retained complete neutralizing immunogenicity after high-temperature storage. The thermal stability of such adjuvanted vaccine powder preparations may thus eliminate the need for the cold chain.


Asunto(s)
Adyuvantes Inmunológicos/química , Proteínas de la Cápside/inmunología , Proteínas Oncogénicas Virales/inmunología , Vacunas contra Papillomavirus/química , Vacunas contra Papillomavirus/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Rastreo Diferencial de Calorimetría , Proteínas de la Cápside/biosíntesis , Proteínas de la Cápside/genética , Relación Dosis-Respuesta a Droga , Estabilidad de Medicamentos , Almacenaje de Medicamentos , Electroforesis en Gel de Poliacrilamida , Ensayo de Inmunoadsorción Enzimática , Epítopos/química , Femenino , Liofilización , Ratones Endogámicos BALB C , Microscopía Electrónica de Transmisión , Pruebas de Neutralización , Proteínas Oncogénicas Virales/genética , Conformación Proteica , Espectrometría de Fluorescencia , Temperatura
14.
J Pharm Sci ; 104(2): 627-39, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25581103

RESUMEN

During transport and storage, vaccines may be exposed to temperatures outside of the range recommended for storage, potentially causing efficacy losses. To better understand and prevent such losses, dominant negative inhibitor (DNI), a recombinant protein antigen for a candidate vaccine against anthrax, was formulated as a liquid and as a glassy lyophilized powder with the adjuvants aluminum hydroxide and glycopyranoside lipid A (GLA). Freeze-thawing of the liquid vaccine caused the adjuvants to aggregate and decreased its immunogenicity in mice. Immunogenicity of liquid vaccines also decreased when stored at 40°C for 8 weeks, as measured by decreases in neutralizing antibody titers in vaccinated mice. Concomitant with efficacy losses at elevated temperatures, changes in DNI structure were detected by fluorescence spectroscopy and increased deamidation was observed by capillary isoelectric focusing (cIEF) after only 1 week of storage of the liquid formulation at 40°C. In contrast, upon lyophilization, no additional deamidation after 4 weeks at 40°C and no detectable changes in DNI structure or reduction in immunogenicity after 16 weeks at 40°C were observed. Vaccines containing aluminum hydroxide and GLA elicited higher immune responses than vaccines adjuvanted with only aluminum hydroxide, with more mice responding to a single dose.


Asunto(s)
Adyuvantes Farmacéuticos/química , Hidróxido de Aluminio/química , Vacunas contra el Carbunco/química , Lípido A/química , Adyuvantes Farmacéuticos/metabolismo , Hidróxido de Aluminio/metabolismo , Animales , Vacunas contra el Carbunco/metabolismo , Estabilidad de Medicamentos , Femenino , Liofilización/métodos , Congelación , Vidrio , Lípido A/metabolismo , Ratones , Ratones Endogámicos BALB C
15.
Eur J Pharm Biopharm ; 85(2): 279-86, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23583494

RESUMEN

Lyophilization was used to prepare dry, glassy solid vaccine formulations of recombinant ricin toxin A-chain containing suspensions of colloidal aluminum hydroxide adjuvant. Four lyophilized formulations were prepared by using combinations of rapid or slow cooling during lyophilization and one of two buffers, histidine or ammonium acetate. Trehalose was used as the stabilizing excipient. Aggregation of the colloidal aluminum hydroxide suspension was reduced in formulations processed with a rapid cooling rate. Aluminum hydroxide particle size distributions, glass transition temperatures, water contents, and immunogenicities of lyophilized vaccines were independent of incubation time at 40 °C for up to 15 weeks. Mice immunized with reconstituted ricin toxin subunit A (RTA) vaccines produced RTA-specific antibodies and toxin-neutralizing antibodies (TNAs) regardless of the length of high temperature vaccine storage or the degree of aluminum adjuvant aggregation that occurred during lyophilization. In murine studies, lyophilized formulations of vaccines conferred protection against exposure to lethal doses of ricin, even after the lyophilized formulations had been stored at 40 °C for 4 weeks. A corresponding liquid formulation of vaccine stored at 40 °C elicited RTA-specific antibody titers but failed to confer immunity during a ricin challenge.


Asunto(s)
Estabilidad de Medicamentos , Proteínas Recombinantes/química , Ricina/química , Vacunas de Subunidad/química , Adyuvantes Inmunológicos/química , Adyuvantes Inmunológicos/farmacología , Adyuvantes Farmacéuticos/química , Adyuvantes Farmacéuticos/farmacología , Hidróxido de Aluminio/química , Animales , Anticuerpos Neutralizantes/inmunología , Formación de Anticuerpos/inmunología , Tampones (Química) , Química Farmacéutica/métodos , Almacenaje de Medicamentos , Excipientes/química , Femenino , Liofilización/métodos , Calor , Ratones , Tamaño de la Partícula , Proteínas Recombinantes/inmunología , Ricina/inmunología , Temperatura de Transición , Trehalosa/química , Vacunas de Subunidad/inmunología , Agua/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda