Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Sensors (Basel) ; 24(14)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39065992

RESUMEN

Accurate detection of implant loosening is crucial for early intervention in total hip replacements, but current imaging methods lack sensitivity and specificity. Vibration methods, already successful in dentistry, represent a promising approach. In order to detect loosening of the total hip replacement, excitation and measurement should be performed intracorporeally to minimize the influence of soft tissue on damping of the signals. However, only implants with a single sensor intracorporeally integrated into the implant for detecting vibrations have been presented in the literature. Considering different mode shapes, the sensor's position on the implant is assumed to influence the signals. In the work at hand, the influence of the position of the sensor on the recording of the vibrations on the implant was investigated. For this purpose, a simplified test setup was created with a titanium rod implanted in a cylinder of artificial cancellous bone. Mechanical stimulation via an exciter attached to the rod was recorded by three accelerometers at varying positions along the titanium rod. Three states of peri-implant loosening within the bone stock were simulated by extracting the bone material around the titanium rod, and different markers were analyzed to distinguish between these states of loosening. In addition, a modal analysis was performed using the finite element method to analyze the mode shapes. Distinct differences in the signals recorded by the acceleration sensors within defects highlight the influence of sensor position on mode detection and natural frequencies. Thus, using multiple sensors could be advantageous in accurately detecting all modes and determining the implant loosening state more precisely.


Asunto(s)
Artroplastia de Reemplazo de Cadera , Prótesis de Cadera , Humanos , Vibración , Falla de Prótesis , Titanio/química , Análisis de Elementos Finitos
2.
Sensors (Basel) ; 23(10)2023 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-37430659

RESUMEN

Indoor positioning enables mobile machines to perform tasks (semi-)automatically, such as following an operator. However, the usefulness and safety of these applications depends on the reliability of the estimated operator localization. Thus, quantifying the accuracy of positioning at runtime is critical for the application in real-world industrial contexts. In this paper, we present a method that produces an estimate of the current positioning error for each user stride. To accomplish this, we construct a virtual stride vector from Ultra-Wideband (UWB) position measurements. The virtual vectors are then compared to stride vectors from a foot-mounted Inertial Measurement Unit (IMU). Using these independent measurements, we estimate the current reliability of the UWB measurements. Positioning errors are mitigated through loosely coupled filtering of both vector types. We evaluate our method in three environments, showing that it improves positioning accuracy, especially in challenging conditions with obstructed line of sight and sparse UWB infrastructure. Additionally, we demonstrate the mitigation of simulated spoofing attacks on UWB positioning. Our findings indicate that positioning quality can be judged at runtime by comparing user strides reconstructed from UWB and IMU measurements. Our method is independent of situation- or environment-specific parameter tuning, and as such represents a promising approach for detecting both known and unknown positioning error states.

3.
Sensors (Basel) ; 21(14)2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34300417

RESUMEN

Due to upcoming higher integration levels of microprocessors, the market of inertial sensors has changed in the last few years. Smart inertial sensors are becoming more and more important. This type of sensor offers the benefit of implementing sensor-processing tasks directly on the sensor hardware. The software development on such sensors is quite challenging. In this article, we propose an approach for using prerecorded sensor data during the development process to test and evaluate the functionality and timing of the sensor firmware in a repeatable and reproducible way on the actual hardware. Our proposed Sensor-in-the-Loop architecture enables the developer to inject sensor data during the debugging process directly into the sensor hardware in real time. As the timing becomes more critical in future smart sensor applications, we investigate the timing behavior of our approach with respect to timing and jitter. The implemented approach can inject data of three 3-DOF sensors at 1.6 kHz. Furthermore, the jitter shown in our proposed sampling method is at least three times lower than using real sensor data. To prove the statistical significance of our experiments, we use a Gage R&R analysis, extended by the assessment of confidence intervals of our data.


Asunto(s)
Programas Informáticos
4.
Sensors (Basel) ; 21(8)2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33924650

RESUMEN

In this work, four sensor fusion algorithms for inertial measurement unit data to determine the orientation of a device are assessed regarding their usability in a hardware restricted environment such as body-worn sensor nodes. The assessment is done for both the functional and the extra-functional properties in the context of human operated devices. The four algorithms are implemented in three data formats: 32-bit floating-point, 32-bit fixed-point and 16-bit fixed-point and compared regarding code size, computational effort, and fusion quality. Code size and computational effort are evaluated on an ARM Cortex M0+. For the assessment of the functional properties, the sensor fusion output is compared to a camera generated reference and analyzed in an extensive statistical analysis to determine how data format, algorithm, and human interaction influence the quality of the sensor fusion. Our experiments show that using fixed-point arithmetic can significantly decrease the computational complexity while still maintaining a high fusion quality and all four algorithms are applicable for applications with human interaction.


Asunto(s)
Algoritmos , Orientación , Humanos , Orientación Espacial
5.
Sensors (Basel) ; 21(15)2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34372419

RESUMEN

In the past decade, inertial measurement sensors have found their way into many wearable devices where they are used in a broad range of applications, including fitness tracking, step counting, navigation, activity recognition, or motion capturing. One of their key features that is widely used in motion capturing applications is their capability of estimating the orientation of the device and, thus, the orientation of the limb it is attached to. However, tracking a human's motion at reasonable sampling rates comes with the drawback that a substantial amount of data needs to be transmitted between devices or to an end point where all device data is fused into the overall body pose. The communication typically happens wirelessly, which severely drains battery capacity and limits the use time. In this paper, we introduce fastSW, a novel piecewise linear approximation technique that efficiently reduces the amount of data required to be transmitted between devices. It takes advantage of the fact that, during motion, not all limbs are being moved at the same time or at the same speed, and only those devices need to transmit data that actually are being moved or that exceed a certain approximation error threshold. Our technique is efficient in computation time and memory utilization on embedded platforms, with a maximum of 210 instructions on an ARM Cortex-M4 microcontroller. Furthermore, in contrast to similar techniques, our algorithm does not affect the device orientation estimates to deviate from a unit quaternion. In our experiments on a publicly available dataset, our technique is able to compress the data to 10% of its original size, while achieving an average angular deviation of approximately 2° and a maximum angular deviation below 9°.


Asunto(s)
Dispositivos Electrónicos Vestibles , Algoritmos , Fenómenos Biomecánicos , Humanos , Movimiento (Física)
6.
Sensors (Basel) ; 21(21)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34770523

RESUMEN

WLAN mesh networks are one of the key technologies for upcoming smart city applications and are characterized by a flexible and low-cost deployment. The standard amendment IEEE 802.11s introduces low-level mesh interoperability at the WLAN MAC layer. However, scalability limitations imposed by management traffic overhead, routing delays, medium contention, and interference are common issues in wireless mesh networks and also apply to IEEE 802.11s networks. Possible solutions proposed in the literature recommend a divide-and-conquer scheme that partitions the network into clusters and forms smaller collision and broadcast domains by assigning orthogonal channels. We present CHaChA (Clustering Heuristic and Channel Assignment), a distributed cross-layer approach for cluster formation and channel assignment that directly integrates the default IEEE 802.11s mesh protocol information and operating modes, retaining unrestricted compliance to the WLAN standard. Our concept proposes further mechanisms for dynamic cluster adaptation, including subsequent cluster joining, isolation and fault detection, and node roaming for cluster balancing. The practical performance of CHaChA is demonstrated in a real-world 802.11s testbed. We first investigate clustering reproducibility, duration, and communication overhead in static network scenarios of different sizes. We then validate our concepts for dynamic cluster adaptation, considering topology changes that are likely to occur during long-term network operation and maintenance.

7.
Sensors (Basel) ; 18(6)2018 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-29882849

RESUMEN

Piecewise linear approximation of sensor signals is a well-known technique in the fields of Data Mining and Activity Recognition. In this context, several algorithms have been developed, some of them with the purpose to be performed on resource constrained microcontroller architectures of wireless sensor nodes. While microcontrollers are usually constrained in computational power and memory resources, all state-of-the-art piecewise linear approximation techniques either need to buffer sensor data or have an execution time depending on the segment’s length. In the paper at hand, we propose a novel piecewise linear approximation algorithm, with a constant computational complexity as well as a constant memory complexity. Our proposed algorithm’s worst-case execution time is one to three orders of magnitude smaller and its average execution time is three to seventy times smaller compared to the state-of-the-art Piecewise Linear Approximation (PLA) algorithms in our experiments. In our evaluations, we show that our algorithm is time and memory efficient without sacrificing the approximation quality compared to other state-of-the-art piecewise linear approximation techniques, while providing a maximum error guarantee per segment, a small parameter space of only one parameter, and a maximum latency of one sample period plus its worst-case execution time.

8.
Sensors (Basel) ; 17(12)2017 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-29236032

RESUMEN

In the context of modern cyber-physical systems, the accuracy of underlying sensor data plays an increasingly important role in sensor data fusion and feature extraction. The raw events of multiple sensors have to be aligned in time to enable high quality sensor fusion results. However, the growing number of simultaneously connected sensor devices make the energy saving data acquisition and processing more and more difficult. Hence, most of the modern sensors offer a first-in-first-out (FIFO) interface to store multiple data samples and to relax timing constraints, when handling multiple sensor devices. However, using the FIFO interface increases the negative influence of individual clock drifts-introduced by fabrication inaccuracies, temperature changes and wear-out effects-onto the sampling data reconstruction. Furthermore, additional timing offset errors due to communication and software latencies increases with a growing number of sensor devices. In this article, we present an approach for an accurate sample time reconstruction independent of the actual clock drift with the help of an internal sensor timer. Such timers are already available in modern sensors, manufactured in micro-electromechanical systems (MEMS) technology. The presented approach focuses on calculating accurate time stamps using the sensor FIFO interface in a forward-only processing manner as a robust and energy saving solution. The proposed algorithm is able to lower the overall standard deviation of reconstructed sampling periods below 40 µ s, while run-time savings of up to 42% are achieved, compared to single sample acquisition.

9.
Micromachines (Basel) ; 12(11)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34832689

RESUMEN

To achieve a good estimate of the power consumption of an embedded system, including its firmware, is a crucial step in the development of systems with a severely constrained power supply. This is especially true for cases where the device is powered by a small battery or through energy harvesting. The state-of-the-art approaches to measure or estimate the power consumption are formal methods, using power debugging tools with the real hardware or simulation based estimations. In the work at hand, a novel method to estimate the power consumption is proposed, it utilizes the sensor-in-the-loop architecture and enhancing it with a power estimation functionality. The proposed method combines the benefits of former methods, allowing for run-time analysis of the power-consumption in a reproducible way using recorded data without the need for power debugging hardware. In the experiments it is shown that, once set up, the proposed method is able to estimate the power consumption with an error of less than 1% compared to a power debugging hardware. Thus, the proposed method provides a reliable and fast way to estimate the systems power consumption.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda