Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Comput Chem ; 44(6): 766-776, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36412237

RESUMEN

The moving components of combustion engines are operated under harsh conditions of high pressures and temperatures. Extreme-pressure anti-wear additives, such as tricresyl phosphate (TCP), are mixed with base oil to prevent wear through the formation of a lubricant film on the substrate. We studied the effect of liquid pressure on the decomposition pathway of TCP in base oil molecules (2,5-dimethylhexane) using hybrid quantum-classical simulations with density functional theory for electrons. At a temperature of 300 K, we found that: (i) bond-breaking barrier energies of both the OC and PO bonds of TCP decrease monotonically as the liquid pressure increases; (ii) the bond-breaking barrier energy of PO is lower than that of OC at pressures of 0 and 2.0 GPa, but is higher at a pressure of 5.0 GPa; and (iii) the applied pressure significantly lowers the bond-breaking barrier energies of both OC and PO when the PO bond of TCP is directed upward from the substrate. These findings are explained by the inhomogeneous distribution of base oil molecules around TCP and the steric repulsion of the PO bond of TCP. These results indicate that the internal structures of the lubricant films are pressure-dependent.

2.
Ann Bot ; 132(3): 455-470, 2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-37688538

RESUMEN

BACKGROUND AND AIMS: Air and root zone temperatures are important environmental factors affecting plant growth and yield. Numerous studies have demonstrated that air temperature strongly affects plant growth and development. Despite the extensive literature on air temperature, comprehensive studies on the effects of root zone temperature (RZT) on plant growth, elemental composition, and pigments are limited. In this study, we carefully observed the effects of RZT in red leaf lettuce to understand its effect on lettuce growth and pigment content. METHODS: Lettuce (Lactuca sativa, red leaf cultivar 'Red Fire') was grown hydroponically in a plant factory with artificial light under three RZT treatments (15, 25, or 35 °C) for 13 days. We investigated the comprehensive effects of RZT on the production of red leaf lettuce by metabolome and ionome analyses. KEY RESULTS: The 25 °C RZT treatment achieved maximum shoot and root dry weight. The 35 °C RZT decreased plant growth but significantly increased pigment contents (e.g. anthocyanins, carotenoids). In addition, a RZT heating treatment during plant cultivation that changed from 25 to 35 °C RZT for 8 days before harvest significantly increased shoot dry weight compared with the 35 °C RZT and significantly increased pigments compared with the 25 °C RZT. The 15 °C RZT resulted in significantly less pigment content relative to the 35 °C RZT. The 15 °C RZT also resulted in shoot and root dry weights greater than the 35 °C RZT but less than the 25 °C RZT. CONCLUSIONS: This study demonstrated that plant growth and pigments can be enhanced by adjusting RZT during different stages of plant growth to attain enhanced pigment contents while minimizing yield loss. This suggests that controlling RZT could be a viable method to improve lettuce quality via enhancement of pigment content quality while maintaining acceptable yields.


Asunto(s)
Lactuca , Raíces de Plantas , Temperatura , Hidroponía , Antocianinas/farmacología
3.
Front Plant Sci ; 15: 1352331, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38689844

RESUMEN

While it is commonly understood that air temperature can greatly affect the process of photosynthesis and the growth of higher plants, the impact of root zone temperature (RZT) on plant growth, metabolism, essential elements, as well as key metabolites like chlorophyll and carotenoids, remains an area that necessitates extensive research. Therefore, this study aimed to investigate the impact of raising the RZT on the growth, metabolites, elements, and proteins of red leaf lettuce. Lettuce was hydroponically grown in a plant factory with artificial light at four different air temperatures (17, 22, 27, and 30°C) and two treatments with different RZTs. The RZT was raised 3°C above the air temperature in one group, while it was not in the other group. Increasing the RZT 3°C above the air temperature improved plant growth and metabolites, including carotenoids, ascorbic acids, and chlorophyll, in all four air temperature treatments. Moreover, raising the RZT increased Mg, K, Fe, Cu, Se, Rb, amino acids, and total soluble proteins in the leaf tissue at all four air temperatures. These results showed that raising the RZT by 3°C improved plant productivity and the metabolites of the hydroponic lettuce by enhancing nutrient uptake and activating the metabolism in the roots at all four air temperatures. Overall, this research demonstrates that plant growth and metabolites can be improved simultaneously with an increased RZT relative to air temperature. This study serves as a foundation for future research on optimizing RZT in relation to air temperature. Further recommended studies include investigating the differential effects of multiple RZT variations relative to air temperature for increased optimization, examining the effects of RZT during nighttime versus daytime, and exploring the impact of stem heating. This research has the potential to make a valuable contribution to the ongoing growth and progress of the plant factory industry and fundamental advancements in root zone physiology. Overall, this research demonstrates that plant growth and metabolites can be improved simultaneously with an increased RZT relative to air temperature. This study serves as a foundation for future research on optimizing RZT in relation to air temperature. Further recommended studies include investigating the differential effects of multiple RZT variations relative to air temperature for increased optimization, examining the effects of RZT during nighttime versus daytime, and exploring the impact of stem heating. This research has the potential to make a valuable contribution to the ongoing growth and progress of the plant factory industry and fundamental advancements in root zone physiology.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda