Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Environ Monit Assess ; 196(5): 412, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565815

RESUMEN

Cadmium (Cd) is a highly toxic metal that frequently contaminates our environment. In this study, the bioflocculant-producing, cadmium-resistant Escherichia fergusonii ZSF-15 was characterized from Paharang drain, Bawa Chak, Faisalabad, Pakistan. The Cd-resistant E. fergusonii was used to determine the bioflocculant production using yeast-peptone-glycerol medium (pH 6.5) supplemented with 50 mg L-1 of Cd. The culture was incubated for 3 days at 37 °C in a rotary shaker at 120 rpm. The fermentation broth was centrifuged at 4000 g for 10 min after the incubation period. The maximum flocculating activity by isolate ZSF-15 was found to be 71.4% after 48 h of incubation. According to the Fourier transform infrared spectroscopy analysis, the bioflocculant produced by strain ZSF-15 was comprised of typical polysaccharide and protein, i.e. hydroxyl, carboxyl, and amino groups. The strain ZSF-15 exhibited bioflocculant activity at range of pH (6-8) and temperature (35-50℃). Maximum flocculation activity (i.e. 71%) was observed at 47℃, whereas 63% flocculation production was observed at pH 8. In the present study, antioxidant enzyme profile of ZSF-15 was also evaluated under cadmium stress. A significant increase in antioxidant enzymes including superoxide dismutase (118%) and ascorbate peroxidase (28%) was observed, whereas contents of catalase (86%), glutathione transferase (13%), and peroxidase (8%) were decreased as compared to control.


Asunto(s)
Antioxidantes , Cadmio , Escherichia , Cadmio/toxicidad , Concentración de Iones de Hidrógeno , Monitoreo del Ambiente , Floculación
2.
Biotechnol Lett ; 45(2): 137-162, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36504266

RESUMEN

Antimicrobial peptides (AMPs) are a potential alternative to antimicrobial agents that have got considerable research interest owing to their significant role in the inhibition of bacterial pathogens. These AMPs can essentially inhibit the growth and multiplication of microbes through multiple mechanisms including disruption of cellular membranes, inhibition of cell wall biosynthesis, or affecting intracellular components and cell division. Moreover, AMPs are biocompatible and biodegradable therefore, they can be a good alternative to antimicrobial agents and chemical preservatives. A few of their features for example thermostability and high selectivity are quite appealing for their potential use in the food industry for food preservation to prevent the spoilage caused by microorganisms and foodborne pathogens. Despite these advantages, very few AMPs are being used at an industrial scale for food preservation as these peptides are quite vulnerable to external environmental factors which deter their practical applications and commercialization. The review aims to provide an outline of the mechanism of action of AMPs and their prospects as an alternative to chemical preservatives in the food industry. Further studies related to the structure-activity relationship of AMPs will help to expand the understanding of their mechanism of action and to determine specific conditions to increase their stability and applicability in food preservation.


Asunto(s)
Antiinfecciosos , Péptidos Catiónicos Antimicrobianos , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Antimicrobianos , Antiinfecciosos/farmacología , Conservación de Alimentos , Inocuidad de los Alimentos , Conservantes de Alimentos/farmacología
3.
Molecules ; 28(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36677768

RESUMEN

The delayed healing of wounds among people with diabetes is a severe problem worldwide. Hyperglycemia and increased levels of free radicals are the major inhibiting factors of wound healing in diabetic patients. Plant extracts are a rich source of polyphenols, allowing them to be an effective agent for wound healing. Drying temperature and extraction solvent highly affect the stability of polyphenols in plant materials. However, there is a need to optimize the extraction protocol to ensure the efficacy of the final product. For this purpose, the effects of drying temperature and solvents on the polyphenolic composition and diabetic wound healing activity of Moringa oleifera leaves were examined in the present research. Fresh leaves were oven dried at different temperatures (10 °C, 30 °C, 50 °C, and 100 °C) and extracted in three solvents (acetone, ethanol, and methanol) to obtain twelve extracts in total. The extracts were assessed for free radical scavenging and antihyperglycemic effects using DPPH (2,2-diphenylpicrylhydrazyl) and α- glucosidase inhibition assays. Alongside this, a scratch assay was performed to evaluate the cell migration activity of M. oleifera on the human retinal pigment epithelial cell line. The cytotoxicity of the plant extracts was assessed on human retinal pigment epithelial (RPE) and hepatocellular carcinoma (Huh-7) cell lines. Using high-performance liquid chromatography, phenolic compounds in extracts of M. oleifera were identified. We found that an ethanol-based extract prepared by drying the leaves at 10 °C contained the highest amounts of identified polyphenols. Moringa oleifera extracts showed remarkable antioxidant, antidiabetic, and cell migration properties. The best results were obtained with leaves dried at 10 °C and 30 °C. Decreased activities were observed with drying temperatures of 50 °C and above. Moreover, M. oleifera extracts exhibited no toxicity on RPE cells, and the same extracts were cytotoxic for Huh-7 cells. This study revealed that M. oleifera leaves extracts can enhance wound healing in diabetic conditions due to their antihyperglycemic, antioxidant, and cell migration effects. The leaves of this plant can be an excellent therapeutic option when extracted at optimum conditions.


Asunto(s)
Diabetes Mellitus , Moringa oleifera , Humanos , Antioxidantes/farmacología , Antioxidantes/análisis , Solventes , Moringa oleifera/química , Temperatura , Polifenoles/farmacología , Polifenoles/análisis , Extractos Vegetales/farmacología , Extractos Vegetales/química , Cicatrización de Heridas , Hipoglucemiantes/farmacología , Etanol , Hojas de la Planta/química
4.
Molecules ; 28(8)2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37110702

RESUMEN

As is well known, plant products have been increasingly utilized in the pharmaceutical industry in recent years. By combining conventional techniques and modern methodology, the future of phytomedicines appears promising. Pogostemon Cablin (patchouli) is an important herb used frequently in the fragrance industries and has various therapeutic benefits. Traditional medicine has long used the essential oil of patchouli (P. cablin) as a flavoring agent recognized by the FDA. This is a gold mine for battling pathogens in China and India. In recent years, this plant has seen a significant surge in use, and approximately 90% of the world's patchouli oil is produced by Indonesia. In traditional therapies, it is used for the treatment of colds, fever, vomiting, headaches, and stomachaches. Patchouli oil is used in curing many diseases and in aromatherapy to treat depression and stress, soothe nerves, regulate appetite, and enhance sexual attraction. More than 140 substances, including alcohols, terpenoids, flavonoids, organic acids, phytosterols, lignins, aldehydes, alkaloids, and glycosides, have been identified in P. cablin. Pachypodol (C18H16O7) is an important bioactive compound found in P. cablin. Pachypodol (C18H16O7) and many other biologically essential chemicals have been separated from the leaves of P. cablin and many other medicinally significant plants using repeated column chromatography on silica gel. Pachypodol's bioactive potential has been shown by a variety of assays and methodologies. It has been found to have a number of biological activities, including anti-inflammatory, antioxidant, anti-mutagenic, antimicrobial, antidepressant, anticancer, antiemetic, antiviral, and cytotoxic ones. The current study, which is based on the currently available scientific literature, intends to close the knowledge gap regarding the pharmacological effects of patchouli essential oil and pachypodol, a key bioactive molecule found in this plant.


Asunto(s)
Aceites Volátiles , Plantas Medicinales , Pogostemon , Quercetina , Aceites Volátiles/farmacología , Aceites Volátiles/química
5.
Drug Dev Ind Pharm ; 48(9): 502-509, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36191015

RESUMEN

The worldwide increase of multi-drug resistance has directed the researchers to focus on ecofriendly ways of nanoparticles synthesis with effective antivirulence properties. Here, we report the antibiofilm and quorum quenching (QQ) potential of zirconium oxide nanoparticles (ZrO2 NPs) synthesized from aqueous ginger extract against multi-drug resistant (MDR) Acinetobacter baumannii. The results indicated that ZrO2 NPs were of tetragonal shape with average diameter of 16 nm. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values for A. baumannii were 15.6 and 62.5 µg/ml, respectively, as revealed by broth microdilution assay. Exposure of bacterial cells to ZrO2 NPs resulted in reactive oxygen species (ROS) generation which in turn led to cellular membrane disruption as observed by an increase in leakage of cellular contents, such as proteins, sugars, and DNA. The antibiofilm activity was evaluated by microtiter plate assay and the results revealed that the percentage inhibition of biofilm was found to be 14.3-80.6%. ZrO2 NPs also obstructed the chemical composition of biofilms matrix by reducing the proteins and carbohydrate contents. Molecular docking studies of ZrO2 NPs with four proteins (2NAZ, 4HKG, 5D6H, and 5HM6) involved in biofilm formation of A. baumannii revealed the interaction of zirconium with target proteins. These findings suggested the in vitro efficacy of phytosynthesized ZrO2 NPs as antibiofilm and QQ agents that can be exploited in the development of alternative therapeutic options against MDR A. baumannii.


Asunto(s)
Acinetobacter baumannii , Nanopartículas del Metal , Nanopartículas , Percepción de Quorum , Circonio/farmacología , Simulación del Acoplamiento Molecular , Antibacterianos/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Biopelículas , Nanopartículas del Metal/química
6.
Molecules ; 27(19)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36234800

RESUMEN

Coronopus didymus (Brassicaceae) commonly known as lesser swine cress has been reported to be used for its pharmacological activities. This study aimed to evaluate the medicinal potential of C. didymus extracts against cancer, diabetes, infectious bacteria and oxidative stress and the identification of bioactive compounds present in these extracts. The effects of using different solvents for the extraction of C. didymus on the contents of major polyphenols and biological activities were investigated. Plant sample was shade dried, ground to a fine powder, and then soaked in pure acetone, ethanol and methanol. The highest contents of major polyphenols were found in methanol-based extract, i.e., chlorogenic acid, HB acid, kaempferol, ferulic acid, quercetin and benzoic acid with 305.02, 12.42, 11.5, 23.33, 975.7 and 428 mg/g of dry weight, respectively, followed by ethanol- and acetone-based extracts. The methanol-based extract also resulted in the highest antioxidant activities (56.76%), whereas the highest antiproliferative (76.36) and alpha glucosidase inhabitation (96.65) were demonstrated in ethanol-based extracts. No antibacterial property of C. didymus was observed against all the tested strains of bacteria. Further studies should be focused on the identification of specific bioactive compounds responsible for pharmacological activities.


Asunto(s)
Brassicaceae , Lepidium , Acetona , Animales , Antioxidantes/farmacología , Ácido Benzoico , Ácido Clorogénico , Etanol , Hipoglucemiantes/farmacología , Quempferoles , Metanol , Extractos Vegetales/farmacología , Polifenoles/farmacología , Polvos , Quercetina , Solventes , Porcinos , alfa-Glucosidasas
7.
Biofouling ; 36(4): 492-504, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32529892

RESUMEN

Acinetobacter baumannii is a biofilm forming multidrug resistant (MDR) pathogen responsible for respiratory tract infections. In this study, aluminium oxide nanoparticles (Al2O3 NPs) were synthesized and characterized by TEM and EDX and shown to be spherical shaped nanoparticles with a diameter < 10 nm. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) for the Al2O3 NPs ranged between 125 and 1,000 µg ml-1. Exposure to NPs caused cellular membrane disruption, indicated by an increase in cellular leakage of the contents. Biofilm inhibition was 11.64 to 70.2%, whereas attachment of bacteria to polystyrene surfaces was reduced to 48.8 to 51.9% in the presence of NPs. Nanoparticles also reduced extracellular polymeric substance production and the biomass of established biofilms. The data revealed the non-toxic nature of Al2O3 NPs up to a concentrations of 120 µg ml-1 in HeLa cell lines. These results demonstrate an effective and safer use of Al2O3 NPs against the MDR A. baumannii by targeting biofilm formation, adhesion and EPS production.


Asunto(s)
Acinetobacter baumannii , Óxido de Aluminio/toxicidad , Biopelículas/efectos de los fármacos , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Nanopartículas/toxicidad , Antibacterianos , Biopelículas/crecimiento & desarrollo , Células HeLa , Humanos , Pruebas de Sensibilidad Microbiana
8.
Microbiol Immunol ; 62(4): 211-220, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29405384

RESUMEN

The aim of the current investigation was to determine the antibacterial and antibiofilm potential of MgO nanoparticles (NPs) against antibiotic-resistant clinical strains of bacteria. MgO NPs were synthesized by a wet chemical method and further characterized by scanning electron microscopy and energy dispersive X-ray. Antibacterial activity was determined by broth microdilution and agar diffusion methods. The Bradford method was used to assess cellular protein leakage as a result of loss of membrane integrity. Microtiter plate assay following crystal violet staining was employed to determine the effect of MgO NPs on biofilm formation and removal of established biofilms. MIC values ranged between 125 and 500 µg/mL. Moreover, treatment with MgO NPs accelerated rate of membrane disruption, measured as a function of leakage of cellular proteins. Leakage of cellular protein content was greater among gram-negative bacteria. Cell adherence assay indicated 25.3-49.8% inhibition of bacterial attachment to plastic surfaces. According to a static biofilm method, MgO NPs reduced biofilm formation potential from 31% to 82.9% in a time-dependent manner. Moreover, NPs also significantly reduced the biomass of 48, 72, 96 and 120 hr old biofilms (P < 0.05). Cytotoxicity experiments using a neutral red assay revealed that MgO NPs are non-toxic to HeLa cells at concentrations of 15-120 µg/mL. These data provide in vitro scientific evidence that MgO NPs are effective and safe antibiofilm agents that inhibit adhesion, biofilm formation and removal of established biofilms of multidrug-resistant bacteria.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Biopelículas/efectos de los fármacos , Farmacorresistencia Bacteriana/efectos de los fármacos , Óxido de Magnesio/farmacología , Nanopartículas/química , Biopelículas/crecimiento & desarrollo , Membrana Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células HeLa/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Rastreo , Factores de Tiempo
9.
Pak J Pharm Sci ; 29(4): 1163-70, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27393429

RESUMEN

The antibiofilm and antioxidant activities associated with turmeric were the main focus of the study. Antibacterial activity was explored against bacteria isolated from dental plaques and dental unit water lines exhibiting resistance against antibiotics and biocides respectively. This study provides a comparison of the natural plant extract against synthetic mouthwash, chemicals and commonly prescribed antibiotics. Methanol extract was more effective as compared to other extracts. Minimum inhibitory concentrations (MIC) ranged from 2.5-10mg/ml. Time based killing kinetic assay showed a significant reduction of bacterial load with increasing concentration of turmeric. Micro titer plate assay indicated significant inhibition of biofilm formation in cells treated with turmeric extract. Phytochemical screening of plant extracts showed the presence of vital secondary metabolites. Flavonoid content and total phenolic content varied among extracts, phenolic content for methanolic extract was 61.669 mg GAE/ gm dry extract and flavonoid content was 3.119mg quercitin/gm dry extract. The values of ferric reducing power were in the range of 5.55- 15.55 mmol of FeSO4 equivalent/ liter of the extract. Antioxidant activities and total phenolic content of the turmeric extracts had significant positive correlation. On the basis of these results turmeric may confidently be recommended as natural antibiofilm and antioxidant agent.


Asunto(s)
Antioxidantes/farmacología , Biopelículas/efectos de los fármacos , Extractos Vegetales/farmacología , Curcuma , Flavonoides/análisis , Extractos Vegetales/análisis
10.
Heliyon ; 10(8): e29500, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38660254

RESUMEN

The emergence of antimicrobial resistance among biofilm forming pathogens aimed to search for the efficient and novel alternative strategies. Metallic nanoparticles have drawn a considerable attention because of their significant applications in various fields. Numerous methods are developed for the generation of these nanoparticles however, mycogenic (fungal-mediated) synthesis is attractive due to high yields, easier handling, eco-friendly and being energy efficient when compared with conventional physico-chemical methods. Moreover, mycogenic synthesis provides fungal derived biomolecules that coat the nanoparticles thus improving their stability. The process of mycogenic synthesis can be extracellular or intracellular depending on the fungal genera used and various factors such as temperature, pH, biomass concentration and cultivation time may influence the synthesis process. This review focuses on the synthesis of metallic nanoparticles by using fungal mycelium, mechanism of synthesis, factors affecting the mycosynthesis and also describes their potential applications as antioxidants and antibiofilm agents. Moreover, the utilization of mycogenic nanoparticles as quorum quenching agent in hampering the bacterial cell-cell communication (quorum sensing) has also been discussed.

11.
Virol Sin ; 39(3): 369-377, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38599520

RESUMEN

Infectious diseases caused by arboviruses are a public health concern in Pakistan. However, studies on data prevalence and threats posed by arboviruses are limited. This study investigated the seroprevalence of arboviruses in a healthy population in Pakistan, including severe fever with thrombocytopenia syndrome virus (SFTSV), Crimean-Congo hemorrhagic fever virus (CCHFV), Tamdy virus (TAMV), and Karshi virus (KSIV) based on a newly established luciferase immunoprecipitation system (LIPS) assays, and Zika virus (ZIKV) by enzyme-linked immunosorbent assays (ELISA). Neutralizing activities against these arboviruses were further examined from the antibody positive samples. The results showed that the seroprevalence of SFTSV, CCHFV, TAMV, KSIV, and ZIKV was 17.37%, 7.58%, 4.41%, 1.10%, and 6.48%, respectively, and neutralizing to SFTSV (1.79%), CCHFV (2.62%), and ZIKV (0.69%) were identified, as well as to the SFTSV-related Guertu virus (GTV, 0.83%). Risk factors associated with the incidence of exposure and levels of antibody response were analyzed. Moreover, co-exposure to different arboviruses was demonstrated, as thirty-seven individuals were having antibodies against multiple viruses and thirteen showed neutralizing activity. Males, individuals aged ≤40 years, and outdoor workers had a high risk of exposure to arboviruses. All these results reveal the substantial risks of infection with arboviruses in Pakistan, and indicate the threat from co-exposure to multiple arboviruses. The findings raise the need for further epidemiologic investigation in expanded regions and populations and the necessity to improve health surveillance in Pakistan.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Infecciones por Arbovirus , Arbovirus , Humanos , Pakistán/epidemiología , Estudios Seroepidemiológicos , Masculino , Femenino , Adulto , Infecciones por Arbovirus/epidemiología , Infecciones por Arbovirus/virología , Anticuerpos Antivirales/sangre , Adulto Joven , Persona de Mediana Edad , Arbovirus/inmunología , Arbovirus/aislamiento & purificación , Adolescente , Niño , Anticuerpos Neutralizantes/sangre , Factores de Riesgo , Anciano , Preescolar , Ensayo de Inmunoadsorción Enzimática
12.
Artículo en Inglés | MEDLINE | ID: mdl-37303179

RESUMEN

OBJECTIVE: In the last decade, nanobiotechnology is emerging as a keen prudence area owing to its widespread applications in the medical field. In this context, zero-valent iron nanoparticles (nZVI) have garnered tremendous attention attributed to their cheap, non-toxic, excellent paramagnetic nature, extremely reactive surface, and dual oxidation state that makes them excellent antioxidants and free-radical scavengers. Facile biogenic synthesis, in which a biological source is used as a template for the synthesis of NPs, is presumably dominant among other physical and chemical synthetic procedures. The purpose of this review is to elucidate plant-mediated synthesis of nZVI, although they have been successfully fabricated by microbes and other biological entities (such as starch, chitosan, alginate, cashew nut shell, etc.) as well. METHODS: The methodology of the study involved keyword searches of electronic databases, including ScienceDirect, NCBI, and Google Scholar (2008-2023). Search terms of the review included 'biogenic synthesis of nZVI', 'plant-mediated synthesis of nZVI', 'medical applications of nZVI', and 'Recent advancements and future prospects of nZVI'. RESULTS: Various articles were identified and reviewed for biogenic fabrication of stable nZVI with the vast majority of studies reporting positive findings. The resultant nanomaterial found great interest for biomedical purposes such as their use as biocompatible anticancer, antimicrobial, antioxidant, and albumin binding agents that have not been adequately accessed in previous studies. CONCLUSION: This review shows that there are potential cost savings applications to be made when using biogenic nZVI for medical purposes. However, the encountering challenges concluded later, along with the prospects for sustainable future development.

13.
Int J Biol Macromol ; 242(Pt 3): 124954, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37211075

RESUMEN

Biopolymer based metal oxide nanoparticles, prepared by eco-friendly approach, are gaining interest owing to their wide range of applications. In this study, aqueous extract of Trianthema portulacastrum was used for the green synthesis of chitosan base copper oxide (CH-CuO) nanoparticles. The nanoparticles were characterized through UV-Vis Spectrophotometry, SEM, TEM, FTIR and XRD analysis. These techniques provided evidence for the successful synthesis of the nanoparticles, having poly-dispersed spherical shaped morphology with average crystallite size of 17.37 nm. The antibacterial activity for the CH-CuO nanoparticles was determined against multi-drug resistant (MDR), Escherichia coli, Pseudomonas aeruginosa (gram-negative), Enterococcus faecium and Staphylococcus aureus (gram-positive). Maximum activity was obtained against Escherichia coli (24 ± 1.99 mm) while least activity was observed against Staphylococcus aureus (17 ± 1.54 mm). In-vitro analysis for biofilm inhibition, EPS and cell surface hydrophobicity showed >60 % inhibitions for all the bacterial isolates. Antioxidant and photocatalytic assays for the nanoparticles showed significant activities of radical scavenging (81 ± 4.32 %) and dye degradation (88 %), respectively. Antidiabetic activity for the nanoparticles, determined by in-vitro analysis of alpha amylase inhibition, showed enzyme inhibition of 47 ± 3.29 %. The study signifies the potential of CH-CuO nanoparticle as an effective antimicrobial agent against MDR bacteria along with the antidiabetic and photocatalytic activities.


Asunto(s)
Aizoaceae , Antiinfecciosos , Quitosano , Nanopartículas del Metal , Antioxidantes/farmacología , Cobre/farmacología , Quitosano/farmacología , Hipoglucemiantes/farmacología , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Bacterias , Óxidos/farmacología , Escherichia coli , Pruebas de Sensibilidad Microbiana
14.
PeerJ ; 11: e14754, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36778156

RESUMEN

Fusarium cotton wilt is a devastating disease of the cotton crop throughout the world, caused by Fusarium oxysporum f.sp. vasinfectum (FOV). Chemical control has many side effects, so, biological controls have been widely used for the management of Fusarium wilt. This study aimed to investigate the possible use of an actinomycetes Saccharothrix algeriensis (SA) NRRL B-24137 to control FOV. To access in-vitro anti-Fusarium ability of SA NRRL B-24137, dual culture assay, spore germination and seed germination tests were carried out. Following in-vitro investigations, several pot tests in a greenhouse environment were used to evaluate the biological control potential of SA NRRL B-24137 against FOV. Dual culture assay and spore germination revealed that SA NRRL B-24137 showed significant anti-Fusarium activity.During spore germination 87.77% inhibition of spore germination were observed. In pot experiments, SA NRRL B-24137 primed cotton seeds resulted in a 74.0% reduction in disease incidence. In soil there was a significant reduction in FOV spores in the presence of SA NRRL B-24137. Positive correlation was also observed on different concentrations of SA NRRL B-24137 towards FOV reduction. The results of this study showed that SA NRRL B-24137 has the potential to be employed as a biocontrol agent against Fusarium cotton wilt, improving cotton growth characteristics and yield.


Asunto(s)
Fusarium , Aceite de Semillas de Algodón/farmacología
15.
Sci Prog ; 106(4): 368504231221672, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38131108

RESUMEN

Phytonanotechnology plays a crucial part in the production of good quality and high-yield food. It can also alter the plant's production systems, hence permitting the efficient, controlled and stable release of agrochemicals such as fertilizers and pesticides. An advanced understanding of nanomaterials interaction with plant responses like localization and uptake, etc. could transfigure the production of crops with high disease resistance and efficient nutrients utilization. In agriculture, the use of nanomaterials has gained acceptance due to their wide-range applications. However, their toxicity and bioavailability are the major hurdles for their massive employment. Undoubtedly, nanoparticles positively influence seeds germination, growth and development, stress management and post-harvest handling of vegetables and fruits. These nanoparticles may also cause toxicity in plants through oxidative stress by generation of excessive reactive oxygen species thus affecting the cellular biomolecules and targeting different channels. Nanoparticles have shown to exert various effects on plants that are mainly affected by various attributes such as physicochemical features of nanomaterials, coating materials for nanoparticles, type of plant, growth stages and growth medium for plants. This article discusses the interaction, accretion and toxicity of nanomaterials in plants. The factors inducing nanotoxicity and the mechanisms followed by nanomaterials causing toxicity are also instructed. At the end, detoxification mechanism of plant is also presented.


Asunto(s)
Nanopartículas , Nanoestructuras , Plaguicidas , Nanoestructuras/toxicidad , Agricultura , Plaguicidas/toxicidad , Nanopartículas/toxicidad , Nanopartículas/química , Plantas
16.
Front Microbiol ; 14: 1188743, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37323910

RESUMEN

The aim of this study was to provide a comparative analysis of chitosan (CH), copper oxide (CuO), and chitosan-based copper oxide (CH-CuO) nanoparticles for their application in the healthcare sector. The nanoparticles were synthesized by a green approach using the extract of Trianthema portulacastrum. The synthesized nanoparticles were characterized using different techniques, such as the synthesis of the particles, which was confirmed by UV-visible spectrometry that showed absorbance at 300 nm, 255 nm, and 275 nm for the CH, CuO, and CH-CuO nanoparticles, respectively. The spherical morphology of the nanoparticles and the presence of active functional groups was validated by SEM, TEM, and FTIR analysis. The crystalline nature of the particles was verified by XRD spectrum, and the average crystallite sizes of 33.54 nm, 20.13 nm, and 24.14 nm were obtained, respectively. The characterized nanoparticles were evaluated for their in vitro antibacterial and antibiofilm potential against Acinetobacter baumannii isolates, where potent activities were exhibited by the nanoparticles. The bioassay for antioxidant activity also confirmed DPPH scavenging activity for all the nanoparticles. This study also evaluated anticancer activities of the CH, CuO, and CH-CuO nanoparticles against HepG2 cell lines, where maximum inhibitions of 54, 75, and 84% were recorded, respectively. The anticancer activity was also confirmed by phase contrast microscopy, where the treated cells exhibited deformed morphologies. This study demonstrates the potential of the CH-CuO nanoparticle as an effective antibacterial agent, having with its antibiofilm activity, and in cancer treatment.

17.
Artículo en Inglés | MEDLINE | ID: mdl-36310620

RESUMEN

Arsenic (As) is a toxic metalloid and human carcinogen that may cause hepatotoxicity. Fisetin (3, 3', 4', 7-tetrahydroxyflavone) is a phytoflavonoid, which shows diverse therapeutic activities. This study aimed to examine the remedial potential of fisetin against As-instigated hepatotoxicity in adult male rats. To accomplish this aim, albino rats (N = 48) were evenly classified into 4 groups: control group, As (10 mg/kg) group, fisetin (2.5 mg/kg) + As (10 mg/kg) group, and fisetin (2.5 mg/kg) group. After one month of treatment, biochemical assay, total protein content (TPC), hepatic serum enzymes, inflammatory as well as pro- or anti-apoptotic markers, and histopathological profile of hepatic tissues were estimated. As administration disordered the biochemical profile by decreasing activities of antioxidant enzymes i.e., catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GSR), and glutathione (GSH) content while escalating the levels of reactive oxygen species (ROS), and thiobarbituric acid reactive substances (TBARS). TPC was also considerably reduced after exposure to As. Furthermore, As markedly raised the levels of liver serum enzymes such as aspartate transaminase (AST), alkaline phosphatase (ALP), and alanine transaminase (ALT) as well as the levels of inflammatory markers, i.e., nuclear factor- κB (NF-κB), tumor necrosis- α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and cyclo-oxygenase-2 (COX-2) activity. Besides, it lowered the level of antiapoptotic markers (Bcl-2) and upregulated the levels of proapoptotic markers (Bax, Caspase-3, and Caspase-9). Additionally, As exposure led to histopathological damage in hepatic tissues. However, fisetin administration remarkably alleviated all the depicted hepatic damages. For further verification, the screening of several dock complexes was performed by using the GOLD 5.3.0 version. Based on docking fitness and GOLD score, the ranking order of receptor proteins with fisetin compound is superoxide dismutase, interleukin, aspartate aminotransferase, alkaline phosphatase, TNF-alpha, alanine transaminase, cyclo-oxygenase 2, antiapoptotic, and glutathione reductase. Out of these three receptor proteins superoxide dismutase, interleukin, and aspartate aminotransferase showed the best interaction with the fisetin compound. In vivo and in silico outcomes of the current study demonstrated that fisetin could potentially ameliorate As-instigated hepatotoxicity.

18.
Artículo en Inglés | MEDLINE | ID: mdl-35685730

RESUMEN

The purpose of this study was to assess different in vitro biological activities such as phytochemical constituents, enzymatic antioxidant status, cytotoxicity through hemolytic activity, and antidiabetic potential of plant methanolic extract through glucose uptake by yeast cells. Further, using in silico approach by the SwissADME technique the drug-likeness rules for bioactive components were characterized, while potential interactions were identified via molecular docking of a ligand with target proteins by GOLD 5.3.0. The results showed that T. divaricata was rich in TPC and TFC, i.e., 62.32 ± 4.02 and 24.53 ± 0.61, respectively, and the cytotoxic potential was 10% towards human RBCs, while protein estimation revealed the presence of protein in the extract, which was 22.82 ± 4.6. DPPH assay in comparison with ascorbic acid and several enzymatic assays, such as CAT, SOD, and POD, showed maximum antioxidant potential, i.e.,15.9 ± 2.33%, 65.57 ± 13.4%, 3.02 ± 3.4, 15.87 ± 0.5, and 0.74 ± 0.2, respectively. Glucose uptake by yeast cells, i.e., α-amylase and α-glucosidase, showed a maximum antidiabetic potential such as 75.11 ± 1.44%, 41.81 ± 3.75%, and 35.9 ± 1.24%, respectively. Our results indicate that the methanolic extract of T. divaricata has antioxidant potential and inhibits α-amylase and α-glucosidase activity and possesses maximum antidiabetic potential. The results provide scientific proof that the medicinal plant being studied is a powerful source of natural antioxidant, antidiabetic, and medicinally significant substances. In silico study, using a molecular docking, unveiled that two compounds showed good interactions with 5kzw protein with considerable binding affinities and fulfilled docking parameters. It may conclude that T. divaricata is an important vegetable with a potent source of natural antioxidants and antidiabetic activity justifying its traditional use in green therapeutics.

19.
PLoS One ; 17(1): e0259190, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34986148

RESUMEN

Emergence of multidrug resistant pathogens is increasing globally at an alarming rate with a need to discover novel and effective methods to cope infections due to these pathogens. Green nanoparticles have gained attention to be used as efficient therapeutic agents because of their safety and reliability. In the present study, we prepared zinc oxide nanoparticles (ZnO NPs) from aqueous leaf extract of Acacia arabica. The nanoparticles produced were characterized through UV-Visible spectroscopy, scanning electron microscopy, and X-ray diffraction. In vitro antibacterial susceptibility testing against foodborne pathogens was done by agar well diffusion, growth kinetics and broth microdilution assays. Effect of ZnO NPs on biofilm formation (both qualitatively and quantitatively) and exopolysaccharide (EPS) production was also determined. Antioxidant potential of green synthesized nanoparticles was detected by DPPH radical scavenging assay. The cytotoxicity studies of nanoparticles were also performed against HeLa cell lines. The results revealed that diameter of zones of inhibition against foodborne pathogens was found to be 16-30 nm, whereas the values of MIC and MBC ranged between 31.25-62.5 µg/ml. Growth kinetics revealed nanoparticles bactericidal potential after 3 hours incubation at 2 × MIC for E. coli while for S. aureus and S. enterica reached after 2 hours of incubation at 2 × MIC, 4 × MIC, and 8 × MIC. 32.5-71.0% inhibition was observed for biofilm formation. Almost 50.6-65.1% (wet weight) and 44.6-57.8% (dry weight) of EPS production was decreased after treatment with sub-inhibitory concentrations of nanoparticles. Radical scavenging potential of nanoparticles increased in a dose dependent manner and value ranged from 19.25 to 73.15%. Whereas cytotoxicity studies revealed non-toxic nature of nanoparticles at the concentrations tested. The present study suggests that green synthesized ZnO NPs can substitute chemical drugs against antibiotic resistant foodborne pathogens.


Asunto(s)
Acacia/metabolismo , Enfermedades Transmitidas por los Alimentos/prevención & control , Nanopartículas del Metal/química , Óxido de Zinc/química , Antibacterianos/farmacología , Antioxidantes/farmacología , Biopelículas/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Enfermedades Transmitidas por los Alimentos/microbiología , Tecnología Química Verde/métodos , Células HeLa , Humanos , Pruebas de Sensibilidad Microbiana/métodos , Microscopía Electrónica de Rastreo/métodos , Extractos Vegetales/farmacología , Hojas de la Planta/metabolismo , Reproducibilidad de los Resultados , Espectrometría por Rayos X/métodos , Staphylococcus aureus/efectos de los fármacos , Difracción de Rayos X/métodos , Zinc/química , Zinc/metabolismo , Óxido de Zinc/metabolismo
20.
Dose Response ; 18(3): 1559325820958911, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32973419

RESUMEN

Nano-fertilizer(s), an emerging field of agriculture, is alternate option for enhancement of plant growth replacing the synthetic fertilizers. Zinc oxide nanoparticles (ZnO NPs) can be used as the zinc source for plants. The present investigation was carried out to assess the role of ZnO NPs in growth promotion of maize plants. Biosynthesized ZnO NPs (using Bacillus sp) were characterized using Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), X-ray diffraction (XRD) and Zeta potential. Different concentrations of ZnO NPs (2, 4, 8, 16 mg/L) were explored in pot culture experiment. Size of ZnO NPs ranged between 16 and 20 nm. A significant increase in growth parameters like shoot length (61.7%), root length (56.9%) and significantly higher level of protein was observed in the treated plants. The overall pattern for growth biomarkers including the protein contents was maximum at 8 mg/L of ZnO NPs. It was observed that application of biosynthesized ZnO NPs has improved majority of growth biomarkers including plant growth parameters, protein contents and leaf area. Therefore, biosynthesized ZnO NPs could be considered as an alternate source of nutrient in Zn deficient soils for promoting the modern agriculture.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda