Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Biol Lett ; 20(8): 20240033, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39140203

RESUMEN

Characterizing the population density of species is a central interest in ecology. Eastern North America is the global hotspot for biodiversity of plethodontid salamanders, an inconspicuous component of terrestrial vertebrate communities, and among the most widespread is the eastern red-backed salamander, Plethodon cinereus. Previous work suggests population densities are high with significant geographic variation, but comparisons among locations are challenged by lack of standardization of methods and failure to accommodate imperfect detection. We present results from a large-scale research network that accounts for detection uncertainty using systematic survey protocols and robust statistical models. We analysed mark-recapture data from 18 study areas across much of the species range. Estimated salamander densities ranged from 1950 to 34 300 salamanders ha-1, with a median of 9965 salamanders ha-1. We compared these results to previous estimates for P. cinereus and other abundant terrestrial vertebrates. We demonstrate that overall the biomass of P. cinereus, a secondary consumer, is of similar or greater magnitude to widespread primary consumers such as white-tailed deer (Odocoileus virginianus) and Peromyscus mice, and two to three orders of magnitude greater than common secondary consumer species. Our results add empirical evidence that P. cinereus, and amphibians in general, are an outsized component of terrestrial vertebrate communities in temperate ecosystems.


Asunto(s)
Biomasa , Bosques , Densidad de Población , Urodelos , Animales , Urodelos/fisiología , Biodiversidad , América del Norte
2.
J Exp Zool A Ecol Integr Physiol ; 339(2): 220-233, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36450699

RESUMEN

Ecoimmunology affords us the ability to better understand immunological processes through consideration of external factors, such as the thermal microenvironment. This consideration is imperative when examining the immunological processes of ectothermic organisms like reptiles. Reptiles uniquely rely heavily on their innate immune function but remain poorly understood in immunological studies. In this study, we examined innate immunity in two zoo-housed tortoise species, the Indian star tortoise (Geochelone elegans, Schoepff, 1795) and northern spider tortoise (Pyxis arachnoides brygooi, Vuillemin & Domergue, 1972). Bacterial killing assays (BKAs) were optimized and used to assess the monthly immunocompetence of these tortoises to three different bacteria: Escherichia coli, Salmonella enterica, and Staphylococcus aureus. We evaluated differences in blood biochemistry values (lactate and glucose) among months and species as well as fecal corticosterone (CORT) between species. Lastly, we examined the potential influences of individual thermal microenvironments on bactericidal ability. Both G. elegans and P. a. brygooi demonstrated immunocompetence against all bacterial challenges, but only bactericidal ability against E. coli varied over months. Optimal BKA serum dilutions, blood glucose levels, and fecal CORT concentrations differed between the two species. Finally, there was evidence that the thermal microenvironment influenced the tortoises' bactericidal ability against E. coli. Through use of nonmodel organisms, such as tortoises, we are given insight into the inner workings of innate immunity and a better understanding of the complexities of the vertebrate immune system.


Asunto(s)
Tortugas , Animales , Escherichia coli , Inmunidad Innata
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda