Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Microsc ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963095

RESUMEN

Flow or collective movement is a frequently observed phenomenon for many cellular components including the cytoskeletal proteins actin and myosin. To study protein flow in living cells, we and others have previously used spatiotemporal image correlation spectroscopy (STICS) analysis on fluorescence microscopy image time series. Yet, in cells, multiple protein flows often occur simultaneously on different scales resulting in superimposed fluorescence intensity fluctuations that are challenging to separate using STICS. Here, we exploited the characteristic that distinct protein flows often occur at different spatial scales present in the image series to disentangle superimposed protein flow dynamics. We employed a newly developed and an established spatial filtering algorithm to alternatively accentuate or attenuate local image intensity heterogeneity across different spatial scales. Subsequently, we analysed the spatially filtered time series with STICS, allowing the quantification of two distinct superimposed flows within the image time series. As a proof of principle of our analysis approach, we used simulated fluorescence intensity fluctuations as well as time series of nonmuscle myosin II in endothelial cells and actin-based podosomes in dendritic cells and revealed simultaneously occurring contiguous and noncontiguous flow dynamics in each of these systems. Altogether, this work extends the application of STICS for the quantification of multiple protein flow dynamics in complex biological systems including the actomyosin cytoskeleton.

2.
Hum Mol Genet ; 29(5): 785-802, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-31943018

RESUMEN

Down syndrome (DS), caused by the triplication of human chromosome 21, leads to significant alterations in brain development and is a major genetic cause of intellectual disability. While much is known about changes to neurons in DS, the effects of trisomy 21 on non-neuronal cells such as astrocytes are poorly understood. Astrocytes are critical for brain development and function, and their alteration may contribute to DS pathophysiology. To better understand the impact of trisomy 21 on astrocytes, we performed RNA-sequencing on astrocytes from newly produced DS human induced pluripotent stem cells (hiPSCs). While chromosome 21 genes were upregulated in DS astrocytes, we found consistent up- and down-regulation of genes across the genome with a strong dysregulation of neurodevelopmental, cell adhesion and extracellular matrix molecules. ATAC (assay for transposase-accessible chromatin)-seq also revealed a global alteration in chromatin state in DS astrocytes, showing modified chromatin accessibility at promoters of cell adhesion and extracellular matrix genes. Along with these transcriptomic and epigenomic changes, DS astrocytes displayed perturbations in cell size and cell spreading as well as modifications to cell-cell and cell-substrate recognition/adhesion, and increases in cellular motility and dynamics. Thus, triplication of chromosome 21 is associated with genome-wide transcriptional, epigenomic and functional alterations in astrocytes that may contribute to altered brain development and function in DS.


Asunto(s)
Astrocitos/patología , Adhesión Celular , Síndrome de Down/patología , Regulación de la Expresión Génica , Genoma Humano , Células Madre Pluripotentes Inducidas/patología , Células-Madre Neurales/patología , Astrocitos/metabolismo , Diferenciación Celular , Movimiento Celular , Síndrome de Down/genética , Síndrome de Down/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células-Madre Neurales/metabolismo , Transcriptoma
3.
EMBO J ; 35(16): 1810-21, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27402227

RESUMEN

Membrane fusion is essential for eukaryotic life, requiring SNARE proteins to zipper up in an α-helical bundle to pull two membranes together. Here, we show that vesicle fusion can be suppressed by phosphorylation of core conserved residues inside the SNARE domain. We took a proteomics approach using a PKCB knockout mast cell model and found that the key mast cell secretory protein VAMP8 becomes phosphorylated by PKC at multiple residues in the SNARE domain. Our data suggest that VAMP8 phosphorylation reduces vesicle fusion in vitro and suppresses secretion in living cells, allowing vesicles to dock but preventing fusion with the plasma membrane. Markedly, we show that the phosphorylation motif is absent in all eukaryotic neuronal VAMPs, but present in all other VAMPs. Thus, phosphorylation of SNARE domains is a general mechanism to restrict how much cells secrete, opening the door for new therapeutic strategies for suppression of secretion.


Asunto(s)
Proteína Quinasa C/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas R-SNARE/metabolismo , Vesículas Secretoras/metabolismo , Animales , Línea Celular , Mastocitos/fisiología , Fosforilación , Proteómica , Ratas
4.
PLoS Pathog ; 12(5): e1005603, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27152864

RESUMEN

Vascular endothelial cells act as gatekeepers that protect underlying tissue from blood-borne toxins and pathogens. Nevertheless, endothelial cells are able to internalize large fibrin clots and apoptotic debris from the bloodstream, although the precise mechanism of such phagocytosis-like uptake is unknown. We show that cultured primary human endothelial cells (HUVEC) internalize both pathogenic and non-pathogenic Listeria bacteria comparably, in a phagocytosis-like process. In contrast with previously studied host cell types, including intestinal epithelial cells and hepatocytes, we find that endothelial internalization of Listeria is independent of all known pathogenic bacterial surface proteins. Consequently, we exploited the internalization and intracellular replication of L. monocytogenes to identify distinct host cell factors that regulate phagocytosis-like uptake in HUVEC. Using siRNA screening and subsequent genetic and pharmacologic perturbations, we determined that endothelial infectivity was modulated by cytoskeletal proteins that normally modulate global architectural changes, including phosphoinositide-3-kinase, focal adhesions, and the small GTPase Rho. We found that Rho kinase (ROCK) is acutely necessary for adhesion of Listeria to endothelial cells, whereas the actin-nucleating formins FHOD1 and FMNL3 specifically regulate internalization of bacteria as well as inert beads, demonstrating that formins regulate endothelial phagocytosis-like uptake independent of the specific cargo. Finally, we found that neither ROCK nor formins were required for macrophage phagocytosis of L. monocytogenes, suggesting that endothelial cells have distinct requirements for bacterial internalization from those of classical professional phagocytes. Our results identify a novel pathway for L. monocytogenes uptake by human host cells, indicating that this wily pathogen can invade a variety of tissues by using a surprisingly diverse suite of distinct uptake mechanisms that operate differentially in different host cell types.


Asunto(s)
Proteínas Fetales/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/microbiología , Proteínas Nucleares/metabolismo , Fagocitosis/fisiología , Proteínas/metabolismo , Western Blotting , Células Cultivadas , Citometría de Flujo , Forminas , Humanos , Listeria monocytogenes , Reacción en Cadena de la Polimerasa
6.
Traffic ; 11(3): 361-82, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20070607

RESUMEN

We analyzed the assembly of caveolae in CV1 cells by following the fate of newly synthesized caveolin-1 (CAV1), caveolin-2 and polymerase I and transcript release factor (PTRF)/cavin-1 biochemically and using live-cell imaging. Immediately after synthesis in the endoplasmic reticulum (ER), CAV1 assembled into 8S complexes that concentrated in ER exit sites, due to a DXE sequence in the N-terminal domain. The coat protein II (COPII) machinery allowed rapid transport to the Golgi complex. Accumulating in the medial Golgi, the caveolins lost their diffusional mobility, underwent conformational changes, associated with cholesterol, and eventually assembled into 70S complexes. Together with green fluorescent protein-glycosyl-phosphatidylinositol (GFP-GPI), the newly assembled caveolin scaffolds underwent transport to the plasma membrane in vesicular carriers distinct from those containing vesicular stomatitis virus (VSV) G-protein. After arrival, PTRF/cavin-1 was recruited to the caveolar domains over a period of 25 min or longer. PTRF/cavin-1 itself was present in 60S complexes that also formed in the absence of CAV1. Our study showed the existence of two novel large complexes containing caveolar coat components, and identified a hierarchy of events required for caveolae assembly occurring stepwise in three distinct locations--the ER, the Golgi complex and the plasma membrane.


Asunto(s)
Caveolas/metabolismo , Caveolina 1/metabolismo , Caveolina 2/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Transporte Biológico , Células Cultivadas , Colesterol/metabolismo , Retículo Endoplásmico/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Aparato de Golgi/metabolismo , Células HeLa , Humanos , Ratones , Proteínas de Unión al ARN/metabolismo
7.
J Biol Chem ; 286(7): 5813-22, 2011 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-21156800

RESUMEN

Although bovine pancreatic RNase is one of the best characterized proteins in respect to structure and in vitro refolding, little is known about its synthesis and maturation in the endoplasmic reticulum (ER) of live cells. We expressed the RNase in live cells and analyzed its folding, quality control, and secretion using pulse-chase analysis and other cell biological techniques. In contrast to the slow in vitro refolding, the protein folded almost instantly after translation and translocation into the ER lumen (t(½) < 3 min). Despite high stability of the native protein, only about half of the RNase reached a secretion competent, monomeric form and was rapidly transported from the rough ER via the Golgi complex (t(½) = 16 min) to the extracellular space (t(½) = 35 min). The rest remained in the ER mainly in the form of dimers and was slowly degraded. The dimers were most likely formed by C-terminal domain swapping since mutation of Asn(113), a residue that stabilizes such dimers, to Ser increased the efficiency of secretion from 59 to 75%. Consistent with stringent ER quality control in vivo, the secreted RNase in the bovine pancreas was mainly monomeric, whereas the enzyme present in the cells also contained 20% dimers. These results suggest that the efficiency of secretion is not only determined by the stability of the native protein but by multiple factors including the stability of secretion-incompetent side products of folding. The presence of N-glycans had little effect on the folding and secretion process.


Asunto(s)
Retículo Endoplásmico/enzimología , Pliegue de Proteína , Multimerización de Proteína/fisiología , Ribonucleasa Pancreática/metabolismo , Animales , Células CHO , Bovinos , Cricetinae , Cricetulus , Retículo Endoplásmico/genética , Estabilidad de Enzimas/genética , Pancrelipasa/metabolismo , Biosíntesis de Proteínas/fisiología , Transporte de Proteínas/fisiología , Ribonucleasa Pancreática/genética
8.
J Virol ; 85(9): 4198-211, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21345959

RESUMEN

After binding to its cell surface receptor ganglioside GM1, simian virus 40 (SV40) is endocytosed by lipid raft-mediated endocytosis and slowly transported to the endoplasmic reticulum, where partial uncoating occurs. We analyzed the intracellular pathway taken by the virus in HeLa and CV-1 cells by using a targeted small interfering RNA (siRNA) silencing screen, electron microscopy, and live-cell imaging as well as by testing a variety of cellular inhibitors and other perturbants. We found that the virus entered early endosomes, late endosomes, and probably endolysosomes before reaching the endoplasmic reticulum and that this pathway was part of the infectious route. The virus was especially sensitive to a variety of perturbations that inhibited endosome acidification and maturation. Contrary to our previous models, which postulated the passage of the virus through caveolin-rich organelles that we called caveosomes, we conclude that SV40 depends on the classical endocytic pathway for infectious entry.


Asunto(s)
Endocitosis , Endosomas/metabolismo , Virus 40 de los Simios/fisiología , Internalización del Virus , Animales , Línea Celular , Chlorocebus aethiops , Silenciador del Gen , Humanos , Microscopía/métodos
9.
J Cell Biol ; 170(5): 769-79, 2005 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-16129785

RESUMEN

Using total internal reflection fluorescence microscopy (TIR-FM), fluorescence recovery after photobleaching (FRAP), and other light microscopy techniques, we analyzed the dynamics, the activation, and the assembly of caveolae labeled with fluorescently tagged caveolin-1 (Cav1). We found that when activated by simian virus 40 (SV40), a non-enveloped DNA virus that uses caveolae for cell entry, the fraction of mobile caveolae was dramatically enhanced both in the plasma membrane (PM) and in the caveosome, an intracellular organelle that functions as an intermediate station in caveolar endocytosis. Activation also resulted in increased microtubule (MT)-dependent, long-range movement of caveolar vesicles. We generated heterokaryons that contained GFP- and RFP-tagged caveolae by fusing cells expressing Cav1-GFP and -RFP, respectively, and showed that even when activated, individual caveolar domains underwent little exchange of Cav1. Only when the cells were subjected to transient cholesterol depletion, did the caveolae domain exchange Cav1. Thus, in contrast to clathrin-, or other types of coated transport vesicles, caveolae constitute stable, cholesterol-dependent membrane domains that can serve as fixed containers through vesicle traffic. Finally, we identified the Golgi complex as the site where newly assembled caveolar domains appeared first.


Asunto(s)
Caveolas/metabolismo , Caveolinas/metabolismo , Vesículas Transportadoras/metabolismo , Caveolina 1 , Caveolinas/genética , Membrana Celular/química , Membrana Celular/metabolismo , Colesterol/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo , Colorantes Fluorescentes/metabolismo , Aparato de Golgi/metabolismo , Células HeLa , Humanos , Microscopía Fluorescente/métodos , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Virus 40 de los Simios/metabolismo
10.
Science ; 368(6496): 1205-1210, 2020 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-32527825

RESUMEN

Cell migration is driven by local membrane protrusion through directed polymerization of F-actin at the front. However, F-actin next to the plasma membrane also tethers the membrane and thus resists outgoing protrusions. Here, we developed a fluorescent reporter to monitor changes in the density of membrane-proximal F-actin (MPA) during membrane protrusion and cell migration. Unlike the total F-actin concentration, which was high in the front of migrating cells, MPA density was low in the front and high in the back. Back-to-front MPA density gradients were controlled by higher cofilin-mediated turnover of F-actin in the front. Furthermore, nascent membrane protrusions selectively extended outward from areas where MPA density was reduced. Thus, locally low MPA density directs local membrane protrusions and stabilizes cell polarization during cell migration.


Asunto(s)
Actinas/metabolismo , Movimiento Celular , Extensiones de la Superficie Celular , Actinas/química , Actinas/genética , Membrana Celular , Polaridad Celular , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos
11.
Nat Commun ; 11(1): 4818, 2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32968060

RESUMEN

Migrating cells move across diverse assemblies of extracellular matrix (ECM) that can be separated by micron-scale gaps. For membranes to protrude and reattach across a gap, actin filaments, which are relatively weak as single filaments, must polymerize outward from adhesion sites to push membranes towards distant sites of new adhesion. Here, using micropatterned ECMs, we identify T-Plastin, one of the most ancient actin bundling proteins, as an actin stabilizer that promotes membrane protrusions and enables bridging of ECM gaps. We show that T-Plastin widens and lengthens protrusions and is specifically enriched in active protrusions where F-actin is devoid of non-muscle myosin II activity. Together, our study uncovers critical roles of the actin bundler T-Plastin to promote protrusions and migration when adhesion is spatially-gapped.


Asunto(s)
Movimiento Celular/fisiología , Extensiones de la Superficie Celular/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Sistemas CRISPR-Cas , Adhesión Celular , Línea Celular , Citoesqueleto/metabolismo , Matriz Extracelular/metabolismo , Técnicas de Inactivación de Genes , Humanos , Cinética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/ultraestructura , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/ultraestructura , Miosinas/metabolismo , Seudópodos/metabolismo , Receptor EphB2
12.
Nat Cell Biol ; 21(5): 614-626, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31036939

RESUMEN

Cell growth is controlled by a lysosomal signalling complex containing Rag small GTPases and mammalian target of rapamycin complex 1 (mTORC1) kinase. Here, we carried out a microscopy-based genome-wide human short interfering RNA screen and discovered a lysosome-localized G protein-coupled receptor (GPCR)-like protein, GPR137B, that interacts with Rag GTPases, increases Rag localization and activity, and thereby regulates mTORC1 translocation and activity. High GPR137B expression can recruit and activate mTORC1 in the absence of amino acids. Furthermore, GPR137B also regulates the dissociation of activated Rag from lysosomes, suggesting that GPR137B controls a cycle of Rag activation and dissociation from lysosomes. GPR137B-knockout cells exhibited defective autophagy and an expanded lysosome compartment, similar to Rag-knockout cells. Like zebrafish RagA mutants, GPR137B-mutant zebrafish had upregulated TFEB target gene expression and an expanded lysosome compartment in microglia. Thus, GPR137B is a GPCR-like lysosomal regulatory protein that controls dynamic Rag and mTORC1 localization and activity as well as lysosome morphology.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Genoma Humano/genética , Proteínas de Unión al GTP Monoméricas/genética , Receptores Acoplados a Proteínas G/genética , Animales , Autofagia/genética , Regulación de la Expresión Génica/genética , Humanos , Lisosomas/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Microglía/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , ARN Interferente Pequeño/genética , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
13.
Nat Cell Biol ; 18(12): 1311-1323, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27842057

RESUMEN

The development and maintenance of tissues requires collective cell movement, during which neighbouring cells coordinate the polarity of their migration machineries. Here, we ask how polarity signals are transmitted from one cell to another across symmetrical cadherin junctions, during collective migration. We demonstrate that collectively migrating endothelial cells have polarized VE-cadherin-rich membrane protrusions, 'cadherin fingers', which leading cells extend from their rear and follower cells engulf at their front, thereby generating opposite membrane curvatures and asymmetric recruitment of curvature-sensing proteins. In follower cells, engulfment of cadherin fingers occurs along with the formation of a lamellipodia-like zone with low actomyosin contractility, and requires VE-cadherin/catenin complexes and Arp2/3-driven actin polymerization. Lateral accumulation of cadherin fingers in follower cells precedes turning, and increased actomyosin contractility can initiate cadherin finger extension as well as engulfment by a neighbouring cell, to promote follower behaviour. We propose that cadherin fingers serve as guidance cues that direct collective cell migration.


Asunto(s)
Antígenos CD/metabolismo , Cadherinas/metabolismo , Movimiento Celular , Polaridad Celular , Células Endoteliales/citología , Células Endoteliales/metabolismo , Células Endoteliales de la Vena Umbilical Humana/citología , Fagocitosis , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Actomiosina/metabolismo , Cateninas/metabolismo , Recuento de Células , Membrana Celular/metabolismo , Células HEK293 , Humanos , Imagenología Tridimensional , Uniones Intercelulares/metabolismo , Mitosis , Modelos Biológicos , Optogenética , Polimerizacion , Seudópodos/metabolismo
14.
Nat Cell Biol ; 16(2): 133-44, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24463606

RESUMEN

Ca(2+) signals control cell migration by regulating forward movement and cell adhesion. However, it is not well understood how Ca(2+)-regulatory proteins and second messengers are spatially organized in migrating cells. Here we show that receptor tyrosine kinase and phospholipase C signalling are restricted to the front of migrating endothelial leader cells, triggering local Ca(2+) pulses, local depletion of Ca(2+) in the endoplasmic reticulum and local activation of STIM1, supporting pulsatile front retraction and adhesion. At the same time, the mediator of store-operated Ca(2+) influx, STIM1, is transported by microtubule plus ends to the front. Furthermore, higher Ca(2+) pump rates in the front relative to the back of the plasma membrane enable effective local Ca(2+) signalling by locally decreasing basal Ca(2+). Finally, polarized phospholipase C signalling generates a diacylglycerol gradient towards the front that promotes persistent forward migration. Thus, cells employ an integrated Ca(2+) control system with polarized Ca(2+) signalling proteins and second messengers to synergistically promote directed cell migration.


Asunto(s)
Calcio/metabolismo , Movimiento Celular , Diglicéridos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Transducción de Señal , Células Cultivadas , Retículo Endoplásmico/metabolismo , Humanos , Molécula de Interacción Estromal 1 , Fosfolipasas de Tipo C/metabolismo
15.
Nat Cell Biol ; 13(9): 1116-23, 2011 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-21822278

RESUMEN

The AAA-ATPase VCP (also known as p97) cooperates with distinct cofactors to process ubiquitylated proteins in different cellular pathways. VCP missense mutations cause a systemic degenerative disease in humans, but the molecular pathogenesis is unclear. We used an unbiased mass spectrometry approach and identified a VCP complex with the UBXD1 cofactor, which binds to the plasma membrane protein caveolin-1 (CAV1) and whose formation is specifically disrupted by disease-associated mutations. We show that VCP-UBXD1 targets mono-ubiquitylated CAV1 in SDS-resistant high-molecular-weight complexes on endosomes, which are en route to degradation in endolysosomes. Expression of VCP mutant proteins, chemical inhibition of VCP, or siRNA-mediated depletion of UBXD1 leads to a block of CAV1 transport at the limiting membrane of enlarged endosomes in cultured cells. In patient muscle, muscle-specific caveolin-3 accumulates in sarcoplasmic pools and specifically delocalizes from the sarcolemma. These results extend the cellular functions of VCP to mediating sorting of ubiquitylated cargo in the endocytic pathway and indicate that impaired trafficking of caveolin may contribute to pathogenesis in individuals with VCP mutations.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Portadoras/metabolismo , Caveolina 1/metabolismo , Proteínas de Ciclo Celular/metabolismo , Mutación , Proteínas Adaptadoras Transductoras de Señales , Proteínas Adaptadoras del Transporte Vesicular , Adenosina Trifosfatasas/genética , Animales , Proteínas Relacionadas con la Autofagia , Western Blotting , Proteínas Portadoras/genética , Caveolina 1/genética , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Células Cultivadas , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Endosomas/metabolismo , Endosomas/ultraestructura , Células HEK293 , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Lisosomas/metabolismo , Lisosomas/ultraestructura , Espectrometría de Masas , Microscopía Electrónica , Microscopía Fluorescente , Enfermedades Musculares/genética , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Unión Proteica , Interferencia de ARN , Ratas , Sarcolema/metabolismo , Proteínas Ubiquitinadas/genética , Proteínas Ubiquitinadas/metabolismo , Proteína que Contiene Valosina
16.
J Cell Biol ; 191(3): 615-29, 2010 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21041450

RESUMEN

Caveolae are long-lived plasma membrane microdomains composed of caveolins, cavins, and a cholesterol-rich membrane. Little is known about how caveolae disassemble and how their coat components are degraded. We studied the degradation of caveolin-1 (CAV1), a major caveolar protein, in CV1 cells. CAV1 was degraded very slowly, but turnover could be accelerated by compromising caveolae assembly. Now, CAV1 became detectable in late endosomes (LE) and lysosomes where it was degraded. Targeting to the degradative pathway required ubiquitination and the endosomal sorting complex required for transport (ESCRT) machinery for inclusion into intralumenal vesicles in endosomes. A dual-tag strategy allowed us to monitor exposure of CAV1 to the acidic lumen of individual, maturing LE in living cells. Importantly, we found that "caveosomes," previously described by our group as independent organelles distinct from endosomes, actually correspond to late endosomal compartments modified by the accumulation of overexpressed CAV1 awaiting degradation. The findings led us to a revised model for endocytic trafficking of CAV1.


Asunto(s)
Caveolina 1/metabolismo , Lisosomas/metabolismo , Proteínas Ubiquitinadas/metabolismo , Línea Celular , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Células HeLa , Humanos , Ubiquitinación
17.
Biophys J ; 90(3): 878-85, 2006 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-16284262

RESUMEN

We present a computational particle method for the simulation of isotropic and anisotropic diffusion on curved biological surfaces that have been reconstructed from image data. The method is capable of handling surfaces of high curvature and complex shape, which are often encountered in biology. The method is validated on simple benchmark problems and is shown to be second-order accurate in space and time and of high parallel efficiency. It is applied to simulations of diffusion on the membrane of endoplasmic reticula (ER) in live cells. Diffusion simulations are conducted on geometries reconstructed from real ER samples and are compared to fluorescence recovery after photobleaching experiments in the same ER samples using the transmembrane protein tsO45-VSV-G, C-terminally tagged with green fluorescent protein. Such comparisons allow derivation of geometry-corrected molecular diffusion constants for membrane components from fluorescence recovery after photobleaching data. The results of the simulations indicate that the diffusion behavior of molecules in the ER membrane differs significantly from the volumetric diffusion of soluble molecules in the lumen of the same ER. The apparent speed of recovery differs by a factor of approximately 4, even when the molecular diffusion constants of the two molecules are identical. In addition, the specific shape of the membrane affects the recovery half-time, which is found to vary by a factor of approximately 2 in different ER samples.


Asunto(s)
Biofisica/métodos , Retículo Endoplásmico/metabolismo , Animales , Anisotropía , Membrana Celular/metabolismo , Chlorocebus aethiops , ADN/química , Difusión , Recuperación de Fluorescencia tras Fotoblanqueo , Proteínas Fluorescentes Verdes/química , Microscopía , Modelos Moleculares , Modelos Teóricos , Propiedades de Superficie , Factores de Tiempo , Células Vero
19.
PLoS Comput Biol ; 1(2): 137-54, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16110334

RESUMEN

Changes in the synaptic connection strengths between neurons are believed to play a role in memory formation. An important mechanism for changing synaptic strength is through movement of neurotransmitter receptors and regulatory proteins to and from the synapse. Several activity-triggered biochemical events control these movements. Here we use computer models to explore how these putative memory-related changes can be stabilised long after the initial trigger, and beyond the lifetime of synaptic molecules. We base our models on published biochemical data and experiments on the activity-dependent movement of a glutamate receptor, AMPAR, and a calcium-dependent kinase, CaMKII. We find that both of these molecules participate in distinct bistable switches. These simulated switches are effective for long periods despite molecular turnover and biochemical fluctuations arising from the small numbers of molecules in the synapse. The AMPAR switch arises from a novel self-recruitment process where the presence of sufficient receptors biases the receptor movement cycle to insert still more receptors into the synapse. The CaMKII switch arises from autophosphorylation of the kinase. The switches may function in a tightly coupled manner, or relatively independently. The latter case leads to multiple stable states of the synapse. We propose that similar self-recruitment cycles may be important for maintaining levels of many molecules that undergo regulated movement, and that these may lead to combinatorial possible stable states of systems like the synapse.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda