Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Soft Matter ; 15(47): 9710-9720, 2019 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-31729500

RESUMEN

Poly(butylene succinate-co-propylene succinate) (PBSPS) was polymerized using succinic acid, 1,4-butanediol, 1,3-propanediol, and glycerol (GC). The PBSPS copolyester with a BS/PS ratio of 7/3 has a low melting point (Tm, 80 °C) and crystallization temperature (Tc, 20 °C) in addition to excellent thermal stability with a thermal degradation temperature (Td) above 300 °C. Isodimorphism was observed for 30-50 mol% PS, lowering Tm and Tc. The featured crystalline lattices (021) and (110) of PBS at 2θ = 21.5° and 22.5° gradually disappeared with PS content greater than 50 mol% and transformed into a PPS crystalline lattice at 2θ = 22.3°. Young's modulus decreased with increasing PS content due to crystallinity loss. Wide-angle X-ray diffraction demonstrated that the chain movement regularity was affected by the GC content, reducing the crystallinity. The PBSPS copolyesters were elastic with 0.001 mol% GC but became rigid with GC content greater than 0.01 mol%. The chain conformation was flexible for 0.001-0.01 mol% GC and exhibited an irregular steric architecture for 0.02-0.03 mol% GC due to more GC acting as nodes. Thus, the thermal and mechanical properties of the synthesized bio-based PBSPS copolyesters can be controlled by adjusting the GC content; therefore, such copolyesters are suitable for medical support, coating, and phase-change material applications.


Asunto(s)
Butileno Glicoles/química , Glicerol/química , Polímeros/química , Succinatos/química , Cristalización , Elasticidad , Temperatura
2.
Adv Sci (Weinh) ; 8(21): e2102275, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34519441

RESUMEN

Self-healing soft electronic material composition is crucial to sustain the device long-term durability. The fabrication of self-healing soft electronics exposed to high moisture environment is a significant challenge that has yet to be fully achieved. This paper presents the novel concept of a water-assisted room-temperature autonomous self-healing mechanism based on synergistically dynamic covalent Schiff-based imine bonds with hydrogen bonds. The supramolecular water-assisted self-healing polymer (WASHP) films possess rapid self-healing kinetic behavior and high stretchability due to a reversible dissociation-association process. In comparison with the pristine room-temperature self-healing polymer, the WASHP demonstrates favorable mechanical performance at room temperature and a short self-healing time of 1 h; furthermore, it achieves a tensile strain of 9050%, self-healing efficiency of 95%, and toughness of 144.2 MJ m-3 . As a proof of concept, a versatile WASHP-based light-emitting touch-responsive device (WASHP-LETD) and perovskite quantum dot (PeQD)-based white LED backlight are designed. The WASHP-LETD has favorable mechanical deformation performance under pressure, bending, and strain, whereas the WASHP-PeQDs exhibit outstanding long-term stability even over a period exceeding one year in a boiling water environment. This paper provides a mechanically robust approach for producing eco-friendly, economical, and waterproof e-skin device components.


Asunto(s)
Elastómeros/química , Agua/química , Compuestos de Calcio/química , Dimetilpolisiloxanos/química , Electrónica/instrumentación , Luminiscencia , Óxidos/química , Puntos Cuánticos/química , Temperatura , Resistencia a la Tracción , Titanio/química , Dispositivos Electrónicos Vestibles
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda