RESUMEN
Successful in vitro spermatogenesis was reported using immature mouse testicular tissues in a fragment culture approach, raising hopes that this method could also be applied for fertility preservation in humans. Although maintaining immature human testicular tissue fragments in culture is feasible for an extended period, it remains unknown whether germ cell survival and the somatic cell response depend on the differentiation status of tissue. Employing the marmoset monkey (Callithrix jacchus), we aimed to assess whether the maturation status of prepubertal and peri-/pubertal testicular tissues influence the outcome of testis fragment culture. Testicular tissue fragments from 4- and 8-month-old (n = 3, each) marmosets were cultured and evaluated after 0, 7, 14, 28 and 42 days. Immunohistochemistry was performed for identification and quantification of germ cells (melanoma-associated antigen 4) and Sertoli cell maturation status (anti-Müllerian hormone: AMH). During testis fragment culture, spermatogonial numbers were significantly reduced (P < 0.05) in the 4- but not 8-month-old monkeys, at Day 0 versus Day 42 of culture. Moreover, while Sertoli cells from 4-month-old monkeys maintained an immature phenotype (i.e. AMH expression) during culture, AMH expression was regained in two of the 8-month-old monkeys. Interestingly, progression of differentiation to later meiotic stage was solely observed in one 8-month-old marmoset, which was at an intermediate state regarding germ cell content, with gonocytes as well as spermatocytes present, as well as Sertoli cell maturation status. Although species-specific differences might influence the outcome of testis fragment experiments in vitro, our study demonstrated that the developmental status of the testicular tissues needs to be considered as it seems to be decisive for germ cell maintenance, somatic cell response and possibly the differentiation potential.
Asunto(s)
Células Germinativas/citología , Células Germinativas/metabolismo , Células de Sertoli/metabolismo , Espermatogonias/metabolismo , Animales , Callithrix , Inmunohistoquímica , Masculino , Espermatogénesis/genética , Espermatogénesis/fisiología , Testículo/fisiologíaRESUMEN
STUDY QUESTION: Can a systematic scoring procedure provide crucial information on the status of highly heterogeneous immature human testicular tissues in the context of cryopreservation for fertility preservation? SUMMARY ANSWER: We developed a systematic histological score as a novel diagnostic tool which differentiates the patient cohort according to the status of germ cell differentiation and number of spermatogonia (normal, diminished and absent), and which could be relevant in the fertility clinic. WHAT IS KNOWN ALREADY: Cryopreservation of testicular tissue of immature boys is currently considered the option for future fertility restoration. However, experimental techniques for the derivation of sperm as well as valid diagnostic scoring of these immature testis tissues are not yet reported. STUDY DESIGN, SIZE, DURATION: Testicular tissues of 39 patients (aged 2-20 years) who attended our clinic for cryopreservation between 2010 and 2015 were analyzed to determine the variability of testicular tissue composition, germ cell numbers and differentiation status. PARTICIPANTS/MATERIALS, SETTING, METHODS: Human testicular tissue samples were divided into three groups. Group NT included patients suffering from diseases which do not directly affect the testes (n = 6; aged 6-14 years), group AT included patients suffering from diseases that directly affect the testes (n = 14; 2-17 years), and group KS (Klinefelter patients, n = 19; 12-20 years). Based on immunohistochemical stainings for MAGEA4, the differentiation status as well as the numbers of gonocytes, spermatogonia and spermatocytes were determined. MAIN RESULTS AND THE ROLE OF CHANCE: Testicular tissue samples from the NT group contained a mean of 100.3 spermatogonia/mm3 (×103). Highly heterogeneous and significantly lower mean numbers of spermatogonia were scored in testes from boys after cytotoxic exposures or with pre-existing disease (AT group: 35.7 spermatogonia/mm3 (×103); KS group: 1.8 spermatogonia/mm3 (×103)). In addition, the germ cell differentiation status was determined and revealed tissues with either spermatogonia and gonocytes, only spermatogonia, spermatogonia and spermatocytes, or all three germ cell types were present. Based on spermatogonial numbers and differentiation status, we developed a germ cell score which we applied to each individual patient sample. LIMITATIONS REASONS FOR CAUTION: Normal human testicular tissue samples are difficult to obtain for ethical reasons and the sample numbers were small. However, six such samples provide a valid baseline for the normal situation. WIDER IMPLICATIONS OF THE FINDINGS: Fertility preservation of immature male tissues is an emerging field and is currently offered in many specialized centers worldwide. Our diagnostic germ cell score delivers an easily applicable tool, facilitating patient counseling and thus ensuring comparability between the centers with regard to future studies. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by the Funding Initiative: Translational Research, Ministry of Innovation, Science and Research, Federal State of North Rhine Westphalia (z1403ts006). The authors declare that they do not have competing financial interests.
Asunto(s)
Criopreservación , Preservación de la Fertilidad/métodos , Espermatozoides/citología , Testículo/citología , Adolescente , Niño , Preescolar , Fertilidad , Humanos , Masculino , Adulto JovenRESUMEN
PURPOSE: To evaluate the feasibility and efficacy of image-guided periarterial ethanol injection as an alternative to transluminal radiofrequency ablation. METHODS: Unilateral renal periarterial ethanol injection was performed under general anesthesia in 6 pigs with the contralateral kidney serving as control. All interventions were performed in an open 1.0 T MRI system under real-time multiplanar guidance. The injected volume was 5 ml (95 % ethanol labelled marked MR contrast medium) in 2 pigs and 10 ml in 4 pigs. Four weeks after treatment, the pigs underwent MRI including MRA and were killed. Norepinephrine (NE) concentration in the renal parenchyma served as a surrogate parameter to analyze the efficacy of sympathetic denervation. In addition, the renal artery and sympathetic nerves were examined histologically to identify evidence of vascular and neural injury. RESULTS: In pigs treated with 10 ml ethanol, treatment resulted in neural degeneration. We found a significant reduction of NE concentration in the kidney parenchyma of 53 % (p < 0.02) compared with the untreated contralateral kidney. In pigs treated with 5 ml ethanol, no significant changes in histology or NE were observed. There was no evidence of renal arterial stenosis in MRI, macroscopy or histology in any pig. CONCLUSION: MR-guided periarterial ethanol injection was feasible and efficient for renal sympathetic denervation in a swine model. This technique may be a promising alternative to the catheter-based approach in the treatment of resistant arterial hypertension.