Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Adv Space Res ; 34(6): 1319-27, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15880919

RESUMEN

Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from the preliminary design concepts to the final design. In particular, we will discuss the progress towards a full three-dimensional and computationally efficient deterministic code for which the current HZETRN evaluates the lowest-order asymptotic term. HZETRN is the first deterministic solution to the Boltzmann equation allowing field mapping within the International Space Station (ISS) in tens of minutes using standard finite element method (FEM) geometry common to engineering design practice enabling development of integrated multidisciplinary design optimization methods. A single ray trace in ISS FEM geometry requires 14 ms and severely limits application of Monte Carlo methods to such engineering models. A potential means of improving the Monte Carlo efficiency in coupling to spacecraft geometry is given in terms of re-configurable computing and could be utilized in the final design as verification of the deterministic method optimized design.


Asunto(s)
Transferencia Lineal de Energía , Modelos Teóricos , Método de Montecarlo , Protección Radiológica/instrumentación , Vuelo Espacial/instrumentación , Nave Espacial/instrumentación , Cósmidos , Bases de Datos Factuales , Diseño de Equipo , Arquitectura y Construcción de Instituciones de Salud , Análisis de Elementos Finitos , Iones Pesados , Matemática , Neutrones
2.
IEEE Trans Nucl Sci ; 45(6): 2711-9, 1998 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11542474

RESUMEN

The HZETRN code has been developed over the past decade to evaluate the local radiation fields within sensitive materials on spacecraft in the space environment. Most of the more important nuclear and atomic processes are now modeled and evaluation within a complex spacecraft geometry with differing material components, including transition effects across boundaries of dissimilar materials, are included. The atomic/nuclear database and transport procedures have received limited validation in laboratory testing with high energy ion beams. The codes have been applied in design of the SAGE-III instrument resulting in material changes to control injurious neutron production, in the study of the Space Shuttle single event upsets, and in validation with space measurements (particle telescopes, tissue equivalent proportional counters, CR-39) on Shuttle and Mir. The present paper reviews the code development and presents recent results in laboratory and space flight validation.


Asunto(s)
Radiación Cósmica , Interacciones de Partículas Elementales , Modelos Teóricos , Actividad Solar , Nave Espacial/instrumentación , Algoritmos , Medio Ambiente Extraterrestre , Humanos , Transferencia Lineal de Energía , Protección Radiológica , Reproducibilidad de los Resultados , Dispersión de Radiación , Vuelo Espacial
3.
Radiat Meas ; 33(3): 355-60, 2001 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-11855418

RESUMEN

The interaction of high-energy space radiation with spacecraft materials generates a host of secondary particles, some, such as neutrons, are more biologically damaging and penetrating than the original primary particles. Before committing astronauts to long term exposure in such high radiation environments, a quantitative understanding of the exposure and estimates of the associated risks are required. Energetic neutrons are traditionally difficult to measure due to their neutral charge. Measurement methods have been limited by mass and weight requirements in space to nuclear emulsion, activation foils, a limited number of Bonner spheres, and TEPCs. Such measurements have had limited success in quantifying the neutron component relative to the charged components. We will show that a combination of computational models and experimental measurements can be used as a quantitative tool to evaluate the radiation environment within the Shuttle, including neutrons. Comparisons with space measurements are made with special emphasis on neutron sensitive and insensitive devices.


Asunto(s)
Radiación Cósmica , Modelos Teóricos , Neutrones , Monitoreo de Radiación/instrumentación , Protección Radiológica , Astronautas , Medio Ambiente Extraterrestre , Humanos , Transferencia Lineal de Energía , Polietilenglicoles , Radiometría , Riesgo , Semiconductores , Actividad Solar , Nave Espacial
4.
Phys Med ; 17 Suppl 1: 94-6, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11770546

RESUMEN

Radiation is a primary concern in the planning of a manned mission to Mars. Recent studies using NASA Langley Research Center's HZETRN space radiation transport code show that the low energy neutron fluence on the Martian surface is larger than previously expected. The upper atmosphere of Mars is exposed to a background radiation field made up of a large number of protons during a solar particle event and mixture of light and heavy ions caused by galactic cosmic rays at other times. In either case, these charged ions interact with the carbon and oxygen atoms of the Martian atmosphere through ionization and nuclear collisions producing secondary ions and neutrons which then interact with the atmospheric atoms in a similar manner. In the past, only these downward moving particles have been counted in evaluating the neutron energy spectrum on the surface. Recent enhancements in the HZETRN code allow for the additional evaluation of those neutrons created within the Martian regolith through the same types of nuclear reactions, which rise to the surface. New calculations using this improved HZETRN code show that these upward moving neutrons contribute significantly to the overall neutron spectrum for energies less than 10 MeV.


Asunto(s)
Simulación por Computador , Radiación Cósmica , Marte , Modelos Teóricos , Neutrones , Actividad Solar , Interacciones de Partículas Elementales , Medio Ambiente Extraterrestre , Iones Pesados , Protección Radiológica , Riesgo , Dispersión de Radiación
5.
Phys Med ; 17 Suppl 1: 90-3, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11770545

RESUMEN

In order for humans and electronics to fully and safely operate in the space environment, codes like HZETRN (High Charge and Energy Transport) must be included in any designer's toolbox for design evaluation with respect to radiation damage. Currently, spacecraft designers do not have easy access to accurate radiation codes like HZETRN to evaluate their design for radiation effects on humans and electronics. Today, the World Wide Web is sophisticated enough to support the entire HZETRN code and all of the associated pre and post processing tools. This package is called SIREST (Space Ionizing Radiation Effects and Shielding Tools). There are many advantages to SIREST. The most important advantage is the instant update capability of the web. Another major advantage is the modularity that the web imposes on the code. Right now, the major disadvantage of SIREST will be its modularity inside the designer's system. This mostly comes from the fact that a consistent interface between the designer and the computer system to evaluate the design is incomplete. This, however, is to be solved in the Intelligent Synthesis Environment (ISE) program currently being funded by NASA.


Asunto(s)
Simulación por Computador , Diseño Asistido por Computadora , Radiación Cósmica , Internet , Modelos Teóricos , Vuelo Espacial/instrumentación , Algoritmos , Electrónica , Humanos , Protección Radiológica , Riesgo , Programas Informáticos , Nave Espacial/instrumentación
6.
Acta Astronaut ; 49(3-10): 289-312, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11669118

RESUMEN

The exposures in deep space are largely from the Galactic Cosmic Rays (GCR) for which there is as yet little biological experience. Mounting evidence indicates that conventional linear energy transfer (LET) defined protection quantities (quality factors) may not be appropriate for GCR ions. The available biological data indicates that aluminum alloy structures may generate inherently unhealthy internal spacecraft environments in the thickness range for space applications. Methods for optimization of spacecraft shielding and the associated role of materials selection are discussed. One material which may prove to be an important radiation protection material is hydrogenated carbon nanofibers.


Asunto(s)
Radiación Cósmica , Neoplasias Inducidas por Radiación/prevención & control , Protección Radiológica/métodos , Radiobiología , Vuelo Espacial/instrumentación , Aluminio , Animales , Transformación Celular Neoplásica , Simulación por Computador , Diseño de Equipo , Humanos , Transferencia Lineal de Energía , Modelos Biológicos , Efectividad Biológica Relativa , Programas Informáticos , Actividad Solar , Nave Espacial/instrumentación
7.
Can J Phys ; 78(1): 45-56, 2000 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11543222

RESUMEN

A low-energy neutron transport algorithm for use in space-radiation protection is developed. The algorithm is based upon a multiple energy group analysis of the straight ahead Boltzmann equation utilizing a mean value theorem for integrals. The algorithm developed is then verified by using a collocation method solution on the same straight ahead Boltzmann equation. This algorithm was then coupled to the existing NASA Langley HZETRN (high charge and energy transport) code through the evaporation source term. Evaluation of the neutron fluence generated by the February 23, 1956 solar particle event for an aluminum-water shield-target configuration is then compared with the LAHET Monte Carlo calculation for the same shield-target configuration. The algorithm developed showed a great improvement in results over the unmodified HZETRN solution. A bidirectional modification of the evaporation source produced further improvement of the fluence.


Asunto(s)
Algoritmos , Simulación por Computador , Transferencia de Energía , Neutrones , Protección Radiológica , Aluminio , Radiación Cósmica , Matemática , Método de Montecarlo , Física Nuclear , Reproducibilidad de los Resultados , Dispersión de Radiación , Actividad Solar , Agua
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda