RESUMEN
Evasion of apoptosis is critical for the development and growth of tumors. The pro-survival protein myeloid cell leukemia 1 (Mcl-1) is an antiapoptotic member of the Bcl-2 family, associated with tumor aggressiveness, poor survival, and drug resistance. Development of Mcl-1 inhibitors implies blocking of protein-protein interactions, generally requiring a lengthy optimization process of large, complex molecules. Herein, we describe the use of DNA-encoded chemical library synthesis and screening to directly generate complex, yet conformationally privileged macrocyclic hits that serve as Mcl-1 inhibitors. By applying a conceptual combination of conformational analysis and structure-based design in combination with a robust synthetic platform allowing rapid analoging, we optimized in vitro potency of a lead series into the low nanomolar regime. Additionally, we demonstrate fine-tuning of the physicochemical properties of the macrocyclic compounds, resulting in the identification of lead candidates 57/59 with a balanced profile, which are suitable for future development toward therapeutic use.
Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Apoptosis , Conformación Molecular , ADN , Línea Celular Tumoral , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/químicaRESUMEN
Herein we report the discovery of 2,4-1H-imidazole carboxamides as novel, biochemically potent, and kinome selective inhibitors of transforming growth factor ß-activated kinase 1 (TAK1). The target was subjected to a DNA-encoded chemical library (DECL) screen. After hit analysis a cluster of compounds was identified, which was based on a central pyrrole-2,4-1H-dicarboxamide scaffold, showing remarkable kinome selectivity. A scaffold-hop to the corresponding imidazole resulted in increased biochemical potency. Next, X-ray crystallography revealed a distinct binding mode compared to other TAK1 inhibitors. A benzylamide was found in a perpendicular orientation with respect to the core hinge-binding imidazole. Additionally, an unusual amide flip was observed in the kinase hinge region. Using structure-based drug design (SBDD), key substitutions at the pyrrolidine amide and the glycine resulted in a significant increase in biochemical potency.
RESUMEN
Targeting the "undruggable" proteome remains one of the big challenges in drug discovery. Recent innovations in the field of targeted protein degradation and manipulation of the ubiquitin-proteasome system open up new therapeutic approaches for disorders that cannot be targeted with conventional inhibitor paradigms. Proteolysis targeting chimeras (PROTACs) are bivalent ligands in which a compound that binds to the protein target of interest is connected to a second molecule that binds an E3 ligase via a linker. The E3 protein is usually either Cereblon or Von Hippel-Lindau. Several examples of selective PROTAC molecules with potent effect in cells and in vivo models have been reported. The degradation of specific proteins via these bivalent molecules is already allowing for the study of biochemical pathways and cell biology with more specificity than was possible with inhibitor compounds. In this review, we provide a comprehensive overview of recent developments in the field of small molecule mediated protein degradation, including transcription factors, kinases and nuclear receptors. We discuss the potential benefits of protein degradation over inhibition as well as the challenges that need to be overcome.
RESUMEN
p38 mitogen-activated protein kinases are key mediators of environmental stress response and are promising targets for treatment of inflammatory diseases and cancer. Numerous efforts have led to the discovery of several potent inhibitors; however, so far no highly selective type-II inhibitors have been reported. We previously identified VPC-00628 as a potent and selective type-II inhibitor of p38α/ß with few off-targets. Here we analyzed the chemical building blocks of VPC-00628 that played a key role in achieving potency and selectivity through targeting an inactive state of the kinases induced by a unique folded P-loop conformation. Using a rapid, systematic combinatorial synthetic approach, we identified compound 93 (SR-318) with excellent potency and selectivity for p38α/ß, which potently inhibited the TNF-α release in whole blood. SR-318 therefore presents a potent and selective type-II inhibitor of p38α/ß that can be used as a chemical probe for targeting this particular inactive state of these two p38 isoforms.
Asunto(s)
Compuestos Orgánicos/farmacología , Pirazoles/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Humanos , Modelos Moleculares , Estructura Molecular , Compuestos Orgánicos/química , Unión Proteica , Conformación Proteica , Isoformas de Proteínas , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/química , Proteínas Quinasas p38 Activadas por Mitógenos/genéticaRESUMEN
Novel, efficient synthetic pathways to DAH, KDO, and 2-deoxy-beta-KDO are described. Ring-closing metathesis (RCM) of highly functionalized alpha-alkoxyacrylate fragments resulted in a series of synthetically versatile oxygen heterocyclic intermediates. Further functionalization of the resulting enol ether double bond and subsequent deprotection provided the natural products in high overall yields, starting from commercially available protected sugars.