Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Neurosci ; 42(9): 1864-1881, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35042769

RESUMEN

The development of painful paclitaxel-induced peripheral neuropathy (PIPN) represents a major dose-limiting side effect of paclitaxel chemotherapy. Here we report a promising effect of duvelisib (Copiktra), a novel FDA-approved PI3Kδ/γ isoform-specific inhibitor, in preventing paclitaxel-induced pain-like behavior and pronociceptive signaling in DRGs and spinal cord dorsal horn (SCDH) in rat and mouse model of PIPN. Duvelisib blocked the development of mechanical hyperalgesia in both males and females. Moreover, duvelisib prevented paclitaxel-induced sensitization of TRPV1 receptors, and increased PI3K/Akt signaling in small-diameter DRG neurons and an increase of CD68+ cells within DRGs. Specific optogenetic stimulation of inhibitory neurons combined with patch-clamp recording revealed that duvelisib inhibited paclitaxel-induced weakening of inhibitory, mainly glycinergic control on SCDH excitatory neurons. Enhanced excitatory and reduced inhibitory neurotransmission in the SCDH following PIPN was also alleviated by duvelisib application. In summary, duvelisib showed a promising ability to prevent neuropathic pain in PIPN. The potential use of our findings in human medicine may be augmented by the fact that duvelisib is an FDA-approved drug with known side effects.SIGNIFICANCE STATEMENT We show that duvelisib, a novel FDA-approved PI3Kδ/γ isoform-specific inhibitor, prevents the development of paclitaxel-induced pain-like behavior in males and females and prevents pronociceptive signaling in DRGs and spinal cord dorsal horn in rat and mouse model of paclitaxel-induced peripheral neuropathy.


Asunto(s)
Antineoplásicos Fitogénicos , Neuralgia , Animales , Antineoplásicos Fitogénicos/farmacología , Femenino , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/prevención & control , Isoquinolinas , Masculino , Ratones , Neuralgia/inducido químicamente , Neuralgia/tratamiento farmacológico , Neuralgia/prevención & control , Paclitaxel/efectos adversos , Dolor , Enfermedades del Sistema Nervioso Periférico , Fosfatidilinositol 3-Quinasas , Purinas , Ratas
2.
Artículo en Inglés | MEDLINE | ID: mdl-36690826

RESUMEN

Nestin is a unique intermediate filament expressed for a short period in the developing heart. It was also documented in several cell types of the adult myocardium under pathological conditions such as myocardial infarction or fibrosis. However, circumstances of nestin re-occurrence in the diseased or aging heart have not been elucidated yet. In this work we immunohistochemically detected nestin to determine its expression and distribution pattern in the left ventricular myocardium of normotensive Wistar Kyoto (WKY) rats and in the hypertrophic ones of spontaneously hypertensive (SHR) rats, both at the age of 1 and 1.5 year. No nestin+ cells were identified in the intact myocardium of 1-year-old WKY rats, whereas in the aged 1.5-year-old WKY rats nestin+ endothelial cells in some blood vessels were discovered. In the hypertrophic myocardium of all SHR rats, nestin was rarely detected in desmin+ vimentin- cardiomyocytes and in some vimentin+ interstitial cells often accumulated in clusters, varying in intensity of desmin immunoreactivity. Moreover, nestin was infrequently expressed in the endothelial cells of some myocardial blood vessels in 1-year-old SHR rats, but not in 1.5-year-old ones. Quantitative image analysis of nestin expression in the myocardium confirmed significant increase in 1.5-year-old WKY rats and in SHR rats of both ages compared to the intact 1-year-old WKY rats. This study firstly documents nestin re-expression indicating cytoskeletal remodelling in different cell types of the aging intact and chronically pressure over-loaded hypertrophied myocardium. Our findings confirm nestin involvement in complex changes during myocardial hypertrophy and progressive aging.

3.
J Neuroinflammation ; 18(1): 279, 2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34857006

RESUMEN

BACKGROUND: Opioid analgesics remain widely used for pain treatment despite the related serious side effects. Some of those, such as opioid tolerance and opioid-induced hyperalgesia may be at least partially due to modulation of opioid receptors (OR) function at nociceptive synapses in the spinal cord dorsal horn. It was suggested that increased release of different chemokines under pathological conditions may play a role in this process. The goal of this study was to investigate the crosstalk between the µOR, transient receptor potential vanilloid 1 (TRPV1) receptor and C-C motif ligand 2 (CCL2) chemokine and the involvement of spinal microglia in the modulation of opioid analgesia. METHODS: Patch-clamp recordings of miniature excitatory postsynaptic currents (mEPSCs) and dorsal root evoked currents (eEPSC) in spinal cord slices superficial dorsal horn neurons were used to evaluate the effect of µOR agonist [D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO), CCL2, TRPV1 antagonist SB366791 and minocycline. Paw withdrawal test to thermal stimuli was combined with intrathecal (i.t.) delivery of CCL2 and DAMGO to investigate the modulation in vivo. RESULTS: Application of DAMGO induced a rapid decrease of mEPSC frequency and eEPSC amplitude, followed by a delayed increase of the eESPC amplitude, which was prevented by SB366791. Chemokine CCL2 treatment significantly diminished all the DAMGO-induced changes. Minocycline treatment prevented the CCL2 effects on the DAMGO-induced eEPSC depression, while mEPSC changes were unaffected. In behavioral experiments, i.t. injection of CCL2 completely blocked DAMGO-induced thermal hypoalgesia and intraperitoneal pre-treatment with minocycline prevented the CCL2 effect. CONCLUSIONS: Our results indicate that opioid-induced inhibition of the excitatory synaptic transmission could be severely attenuated by increased CCL2 levels most likely through a microglia activation-dependent mechanism. Delayed potentiation of neurotransmission after µOR activation is dependent on TRPV1 receptors activation. Targeting CCL2 and its receptors and TRPV1 receptors in combination with opioid therapy could significantly improve the analgesic properties of opioids, especially during pathological states.


Asunto(s)
Analgésicos Opioides/farmacología , Quimiocina CCL2/farmacología , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacología , Nocicepción/efectos de los fármacos , Asta Dorsal de la Médula Espinal/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Anilidas/farmacología , Animales , Cinamatos/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Masculino , Potenciales Postsinápticos Miniatura/efectos de los fármacos , Neuronas/efectos de los fármacos , Ratas , Ratas Wistar
4.
Neuropharmacology ; 146: 163-174, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30471295

RESUMEN

Paclitaxel chemotherapy treatment often leads to neuropathic pain resistant to available analgesic treatments. Recently spinal Toll-like receptor 4 (TLR4) and the transient receptor potential cation channel subfamily V member 1 (TRPV1) were identified to be involved in the pro-nociceptive effect of paclitaxel. The aim of this study was to investigate the role of phosphatidylinositol 3-kinase (PI3K) and serine/threonine kinases in this process, with the use of their antagonists (wortmannin, LY-294002, and staurosporine). The single paclitaxel administration (8 mg/kg i.p.) in mice induced robust mechanical allodynia measured as a reduced threshold to von Frey filament stimulation and generated reduced tachyphylaxis of capsaicin-evoked responses, recorded as changes in mEPSC frequency in patch-clamp recordings of dorsal horn neurons activity in vitro, for up to eight days. Paclitaxel application also induced increased Akt kinase phosphorylation in rat DRG neurons. All these paclitaxel-induced changes were prevented by the wortmannin in vivo pretreatment. Acute co-application of wortmannin or LY-294002 with paclitaxel in spinal cord slices also attenuated the paclitaxel effect on capsaicin-evoked responses. Staurosporine was effective in the acute in vitro experiments and on the first day after the paclitaxel treatment in vivo, but in contrast to wortmannin, it did not have a significant impact later. Our data suggest that the inhibition of PI3K signaling may help alleviate pathological pain syndromes in the paclitaxel-induced neuropathy.


Asunto(s)
Capsaicina/farmacología , Hiperalgesia/metabolismo , Neuralgia/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Canales Catiónicos TRPV/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuralgia/inducido químicamente , Neuralgia/metabolismo , Proteína Oncogénica v-akt/metabolismo , Paclitaxel/toxicidad , Fragmentos de Péptidos/inmunología , Fragmentos de Péptidos/metabolismo , Células del Asta Posterior/efectos de los fármacos , Células del Asta Posterior/metabolismo , Proteína Quinasa C/inmunología , Proteína Quinasa C/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Canales de Potencial de Receptor Transitorio
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda