Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
N Engl J Med ; 391(7): 609-618, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39141853

RESUMEN

BACKGROUND: Brain-computer interfaces can enable communication for people with paralysis by transforming cortical activity associated with attempted speech into text on a computer screen. Communication with brain-computer interfaces has been restricted by extensive training requirements and limited accuracy. METHODS: A 45-year-old man with amyotrophic lateral sclerosis (ALS) with tetraparesis and severe dysarthria underwent surgical implantation of four microelectrode arrays into his left ventral precentral gyrus 5 years after the onset of the illness; these arrays recorded neural activity from 256 intracortical electrodes. We report the results of decoding his cortical neural activity as he attempted to speak in both prompted and unstructured conversational contexts. Decoded words were displayed on a screen and then vocalized with the use of text-to-speech software designed to sound like his pre-ALS voice. RESULTS: On the first day of use (25 days after surgery), the neuroprosthesis achieved 99.6% accuracy with a 50-word vocabulary. Calibration of the neuroprosthesis required 30 minutes of cortical recordings while the participant attempted to speak, followed by subsequent processing. On the second day, after 1.4 additional hours of system training, the neuroprosthesis achieved 90.2% accuracy using a 125,000-word vocabulary. With further training data, the neuroprosthesis sustained 97.5% accuracy over a period of 8.4 months after surgical implantation, and the participant used it to communicate in self-paced conversations at a rate of approximately 32 words per minute for more than 248 cumulative hours. CONCLUSIONS: In a person with ALS and severe dysarthria, an intracortical speech neuroprosthesis reached a level of performance suitable to restore conversational communication after brief training. (Funded by the Office of the Assistant Secretary of Defense for Health Affairs and others; BrainGate2 ClinicalTrials.gov number, NCT00912041.).


Asunto(s)
Esclerosis Amiotrófica Lateral , Interfaces Cerebro-Computador , Disartria , Habla , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Amiotrófica Lateral/complicaciones , Esclerosis Amiotrófica Lateral/rehabilitación , Calibración , Equipos de Comunicación para Personas con Discapacidad , Disartria/rehabilitación , Disartria/etiología , Electrodos Implantados , Microelectrodos , Cuadriplejía/etiología , Cuadriplejía/rehabilitación
2.
Sci Rep ; 14(1): 1598, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238386

RESUMEN

Brain-computer interfaces have so far focused largely on enabling the control of a single effector, for example a single computer cursor or robotic arm. Restoring multi-effector motion could unlock greater functionality for people with paralysis (e.g., bimanual movement). However, it may prove challenging to decode the simultaneous motion of multiple effectors, as we recently found that a compositional neural code links movements across all limbs and that neural tuning changes nonlinearly during dual-effector motion. Here, we demonstrate the feasibility of high-quality bimanual control of two cursors via neural network (NN) decoders. Through simulations, we show that NNs leverage a neural 'laterality' dimension to distinguish between left and right-hand movements as neural tuning to both hands become increasingly correlated. In training recurrent neural networks (RNNs) for two-cursor control, we developed a method that alters the temporal structure of the training data by dilating/compressing it in time and re-ordering it, which we show helps RNNs successfully generalize to the online setting. With this method, we demonstrate that a person with paralysis can control two computer cursors simultaneously. Our results suggest that neural network decoders may be advantageous for multi-effector decoding, provided they are designed to transfer to the online setting.


Asunto(s)
Interfaces Cerebro-Computador , Redes Neurales de la Computación , Humanos , Movimiento , Lateralidad Funcional , Mano , Parálisis , Encéfalo
3.
bioRxiv ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38712189

RESUMEN

Keyboard typing with finger movements is a versatile digital interface for users with diverse skills, needs, and preferences. Currently, such an interface does not exist for people with paralysis. We developed an intracortical brain-computer interface (BCI) for typing with attempted flexion/extension movements of three finger groups on the right hand, or both hands, and demonstrated its flexibility in two dominant typing paradigms. The first paradigm is "point-and-click" typing, where a BCI user selects one key at a time using continuous real-time control, allowing selection of arbitrary sequences of symbols. During cued character selection with this paradigm, a human research participant with paralysis achieved 30-40 selections per minute with nearly 90% accuracy. The second paradigm is "keystroke" typing, where the BCI user selects each character by a discrete movement without real-time feedback, often giving a faster speed for natural language sentences. With 90 cued characters per minute, decoding attempted finger movements and correcting errors using a language model resulted in more than 90% accuracy. Notably, both paradigms matched the state-of-the-art for BCI performance and enabled further flexibility by the simultaneous selection of multiple characters as well as efficient decoder estimation across paradigms. Overall, the high-performance interface is a step towards the wider accessibility of BCI technology by addressing unmet user needs for flexibility.

4.
bioRxiv ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38496552

RESUMEN

Intracortical brain-computer interfaces (iBCIs) enable people with tetraplegia to gain intuitive cursor control from movement intentions. To translate to practical use, iBCIs should provide reliable performance for extended periods of time. However, performance begins to degrade as the relationship between kinematic intention and recorded neural activity shifts compared to when the decoder was initially trained. In addition to developing decoders to better handle long-term instability, identifying when to recalibrate will also optimize performance. We propose a method to measure instability in neural data without needing to label user intentions. Longitudinal data were analyzed from two BrainGate2 participants with tetraplegia as they used fixed decoders to control a computer cursor spanning 142 days and 28 days, respectively. We demonstrate a measure of instability that correlates with changes in closed-loop cursor performance solely based on the recorded neural activity (Pearson r = 0.93 and 0.72, respectively). This result suggests a strategy to infer online iBCI performance from neural data alone and to determine when recalibration should take place for practical long-term use.

5.
bioRxiv ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38370697

RESUMEN

People with paralysis express unmet needs for peer support, leisure activities, and sporting activities. Many within the general population rely on social media and massively multiplayer video games to address these needs. We developed a high-performance finger brain-computer-interface system allowing continuous control of 3 independent finger groups with 2D thumb movements. The system was tested in a human research participant over sequential trials requiring fingers to reach and hold on targets, with an average acquisition rate of 76 targets/minute and completion time of 1.58 ± 0.06 seconds. Performance compared favorably to previous animal studies, despite a 2-fold increase in the decoded degrees-of-freedom (DOF). Finger positions were then used for 4-DOF velocity control of a virtual quadcopter, demonstrating functionality over both fixed and random obstacle courses. This approach shows promise for controlling multiple-DOF end-effectors, such as robotic fingers or digital interfaces for work, entertainment, and socialization.

6.
medRxiv ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38645254

RESUMEN

Brain-computer interfaces can enable rapid, intuitive communication for people with paralysis by transforming the cortical activity associated with attempted speech into text on a computer screen. Despite recent advances, communication with brain-computer interfaces has been restricted by extensive training data requirements and inaccurate word output. A man in his 40's with ALS with tetraparesis and severe dysarthria (ALSFRS-R = 23) was enrolled into the BrainGate2 clinical trial. He underwent surgical implantation of four microelectrode arrays into his left precentral gyrus, which recorded neural activity from 256 intracortical electrodes. We report a speech neuroprosthesis that decoded his neural activity as he attempted to speak in both prompted and unstructured conversational settings. Decoded words were displayed on a screen, then vocalized using text-to-speech software designed to sound like his pre-ALS voice. On the first day of system use, following 30 minutes of attempted speech training data, the neuroprosthesis achieved 99.6% accuracy with a 50-word vocabulary. On the second day, the size of the possible output vocabulary increased to 125,000 words, and, after 1.4 additional hours of training data, the neuroprosthesis achieved 90.2% accuracy. With further training data, the neuroprosthesis sustained 97.5% accuracy beyond eight months after surgical implantation. The participant has used the neuroprosthesis to communicate in self-paced conversations for over 248 hours. In an individual with ALS and severe dysarthria, an intracortical speech neuroprosthesis reached a level of performance suitable to restore naturalistic communication after a brief training period.

7.
Adv Neural Inf Process Syst ; 36: 42258-42270, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38738213

RESUMEN

Intracortical brain-computer interfaces (iBCIs) have shown promise for restoring rapid communication to people with neurological disorders such as amyotrophic lateral sclerosis (ALS). However, to maintain high performance over time, iBCIs typically need frequent recalibration to combat changes in the neural recordings that accrue over days. This requires iBCI users to stop using the iBCI and engage in supervised data collection, making the iBCI system hard to use. In this paper, we propose a method that enables self-recalibration of communication iBCIs without interrupting the user. Our method leverages large language models (LMs) to automatically correct errors in iBCI outputs. The self-recalibration process uses these corrected outputs ("pseudo-labels") to continually update the iBCI decoder online. Over a period of more than one year (403 days), we evaluated our Continual Online Recalibration with Pseudo-labels (CORP) framework with one clinical trial participant. CORP achieved a stable decoding accuracy of 93.84% in an online handwriting iBCI task, significantly outperforming other baseline methods. Notably, this is the longest-running iBCI stability demonstration involving a human participant. Our results provide the first evidence for long-term stabilization of a plug-and-play, high-performance communication iBCI, addressing a major barrier for the clinical translation of iBCIs.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda