Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Clin Chem ; 70(1): 165-178, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38175582

RESUMEN

BACKGROUND: Substantial research has been devoted to elucidating the role of extracellular vesicles (EVs) in the different hallmarks of cancer. Consequently, EVs are increasingly explored as a source of cancer biomarkers in body fluids. However, the heterogeneity in EVs, the complexity of body fluids, and the diversity in methods available for EV analysis, challenge the development and translation of EV-based biomarker assays. CONTENT: Essential steps in EV-associated biomarker development are emphasized covering biobanking, biomarker discovery, verification and validation, and clinical implementation. A meticulous study design is essential and ideally results from close interactions between clinicians and EV researchers. A plethora of different EV preparation protocols exists which warrants quality control and transparency to ensure reproducibility and thus enable verification of EV-associated biomarker candidates identified in the discovery phase in subsequent independent cohorts. The development of an EV-associated biomarker assay requires thorough analytical and clinical validation. Finally, regulatory affairs must be considered for clinical implementation of EV-based biomarker assays. SUMMARY: In this review, the current challenges that prevent us from exploiting the full potential of EV-based biomarker assays are identified. Guidelines and tools to overcome these hurdles are highlighted and are crucial to advance EV-based biomarker assays into clinical use.


Asunto(s)
Vesículas Extracelulares , Neoplasias , Humanos , Bancos de Muestras Biológicas , Reproducibilidad de los Resultados , Biomarcadores de Tumor , Neoplasias/diagnóstico
2.
STAR Protoc ; 5(1): 102863, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38421864

RESUMEN

Despite optimal multimodal treatment including surgical resection, 50%-80% of high-grade soft tissue sarcoma (STS) patients metastasize. Here, we present a protocol for the generation and use of post-surgical minimal residual disease models to investigate metastatic relapse in STS patient-derived xenografts. We describe steps for orthotopic engraftment of high-grade STS patient-derived tumor tissue. We then detail procedures for primary tumor resection with broad, negative resection margins and follow-up until metastases using MRI. For complete details on the use and execution of this protocol, please refer to Fischer et al. (2023).1.


Asunto(s)
Sarcoma , Neoplasias de los Tejidos Blandos , Humanos , Neoplasia Residual , Xenoinjertos , Sarcoma/diagnóstico por imagen , Sarcoma/cirugía , Sarcoma/patología , Neoplasias de los Tejidos Blandos/diagnóstico por imagen , Neoplasias de los Tejidos Blandos/cirugía , Neoplasias de los Tejidos Blandos/patología , Imagen por Resonancia Magnética
3.
ACS Nano ; 18(19): 12168-12186, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38687976

RESUMEN

Assessment of hypoxia, nutrients, metabolite gradients, and other hallmarks of the tumor microenvironment within 3D multicellular spheroid and organoid models represents a challenging analytical task. Here, we report red/near-infrared (NIR) emitting cell staining with O2-sensitive nanoparticles, which enable measurements of spheroid oxygenation on a conventional fluorescence microscope. Nanosensor probes, termed "MMIR" (multimodal infrared), incorporate an NIR O2-sensitive metalloporphyrin (PtTPTBPF) and deep red aza-BODIPY reference dyes within a biocompatible polymer shell, allowing for oxygen gradient quantification via fluorescence ratio and phosphorescence lifetime readouts. We optimized staining techniques and evaluated the nanosensor probe characteristics and cytotoxicity. Subsequently, we applied nanosensors to the live spheroid models based on HCT116, DPSCs, and SKOV3 cells, at rest, and treated with drugs affecting cell respiration. We found that the growth medium viscosity, spheroid size, and formation method influenced spheroid oxygenation. Some spheroids produced from HCT116 and dental pulp stem cells exhibited "inverted" oxygenation gradients, with higher core oxygen levels than the periphery. This contrasted with the frequently encountered "normal" gradient of hypoxia toward the core caused by diffusion. Further microscopy analysis of spheroids with an "inverted" gradient demonstrated metabolic stratification of cells within spheroids: thus, autofluorescence FLIM of NAD(P)H indicated the formation of a glycolytic core and localization of OxPhos-active cells at the periphery. Collectively, we demonstrate a strong potential of NIR-emitting ratiometric nanosensors for advanced microscopy studies targeting live and quantitative real-time monitoring of cell metabolism and hypoxia in complex 3D tissue models.


Asunto(s)
Nanopartículas , Oxígeno , Esferoides Celulares , Humanos , Esferoides Celulares/metabolismo , Esferoides Celulares/efectos de los fármacos , Oxígeno/metabolismo , Oxígeno/química , Nanopartículas/química , Microscopía Fluorescente , Rayos Infrarrojos , Metaloporfirinas/química , Metaloporfirinas/farmacología
4.
J Extracell Vesicles ; 13(4): e12421, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38545822

RESUMEN

Extracellular vesicles (EVs) contain a plethora of biomolecules, including nucleic acids, with diverse diagnostic and therapeutic application potential. Although reverse transcription-quantitative PCR (RT-qPCR) is the most widely applied laboratory technique to evaluate gene expression, its applicability in EV research is challenged by the lack of universal and stably present reference genes (RGs). In this study, we identify, validate and establish SNRPG, OST4, TOMM7 and NOP10 as RGs for the normalization of EV-associated genes by RT-qPCR. We show the stable presence of SNRPG, OST4, TOMM7 and NOP10 in multiple cell lines and their secreted EVs (n = 12) under different (patho)physiological conditions as well as in human-derived biofluids (n = 3). Enzymatic treatments confirm the presence of SNRPG, OST4, TOMM7 and NOP10 inside EVs. In addition, the four EV-associated RGs are stably detected in a size-range of EV subpopulations. RefFinder analysis reveals that SNRPG, OST4, TOMM7 and NOP10 are more stable compared to RGs established specifically for cultured cells or tissues such as HMBS, YWHAZ, SDHA and GAPDH. In summary, we present four universal and stably present EV-associated RGs to enable normalization and thus steer the implementation of RT-qPCR for the analysis of EV-associated RNA cargo for research or clinical applications.


Asunto(s)
Vesículas Extracelulares , Transcripción Reversa , Humanos , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , ARN/metabolismo , Línea Celular , Células Cultivadas , Proteínas Nucleares snRNP/metabolismo
5.
J Anim Sci Biotechnol ; 15(1): 104, 2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39097731

RESUMEN

BACKGROUND: Within the follicular fluid, extracellular vesicles (EVs) guide oocyte growth through their cargo microRNAs (miRNAs). Here, we investigated the role of EVs and their cargo miRNAs by linking the miRNAs found in EVs, derived from the fluid of an individual follicle, to the ability of its oocyte to become a blastocyst (competent) or not (non-competent). METHODS: Bovine antral follicles were dissected, categorized as small (2-4 mm) or large (5-8 mm) and the corresponding oocytes were subjected to individual maturation, fertilization and embryo culture to the blastocyst stage. Follicular fluid was pooled in 4 groups (4 replicates) based on follicle size and competence of the corresponding oocyte to produce a blastocyst. Follicular fluid-derived EVs were isolated, characterized, and subjected to miRNA-sequencing (Illumina Miseq) to assess differential expression (DE) in the 4 groups. Functional validation of the effect of miR-34c on embryo development was performed by supplementation of mimics and inhibitors during in vitro maturation (IVM). RESULTS: We identified 16 DE miRNAs linked to oocyte competence when follicular size was not considered. Within the large and small follicles, 46 DE miRNAs were driving blastocyst formation in each group. Comparison of EVs from competent small and large follicles revealed 90 DE miRNAs. Cell regulation, cell differentiation, cell cycle, and metabolic process regulation were the most enriched pathways targeted by the DE miRNAs from competent oocytes. We identified bta-miR-34c as the most abundant in follicular fluid containing competent oocytes. Supplementation of miR-34c mimic and inhibitor during IVM did not affect embryo development. However, blastocyst quality, as evidenced by higher cell numbers, was significantly improved following oocyte IVM in the presence of miR-34c mimics, while miR-34c inhibitors resulted in the opposite effect. CONCLUSION: This study demonstrates the regulatory effect of miRNAs from follicular fluid-derived EVs on oocyte competence acquisition, providing a further basis for understanding the significance of miRNAs in oocyte maturation and embryonic development. Up-regulation of miR-34c in EVs from follicular fluid containing competent oocytes and the positive impact of miR-34c mimics added during IVM on the resulting blastocysts indicate its pivotal role in oocyte competence.

6.
J Extracell Vesicles ; 13(2): e12404, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38326288

RESUMEN

Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly.


Asunto(s)
Exosomas , Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Exosomas/metabolismo , Transporte Biológico , Biomarcadores/metabolismo , Fenotipo
7.
J Extracell Biol ; 1(10): e64, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38939212

RESUMEN

Urinary extracellular vesicles (uEVs) are enriched with glycosylated proteins which have been extensively studied as putative biomarkers of urological cancers. Here, we characterized the glycosylation and integrin profile of EVs derived from urological cancer cell lines. We used fluorescent europium-doped nanoparticles coated with lectins and antibodies to identify a biomarker combination consisting of integrin subunit alpha 3 (ITGA3) and fucose. In addition, we used the same cancer cell line-derived EVs as analytical standards to assess the sensitivity of the ITGA3-UEA assay. The clinical performance of the ITGA3-UEA assay was analysed using urine samples of various urological pathologies including diagnostically challenging benign prostatic hyperplasia (BPH), prostate cancer (PCa) and bladder cancer (BlCa). The assay can significantly discriminate BlCa from all other patient groups: PCa (9.2-fold; p = 0.00038), BPH (5.5-fold; p = 0.004) and healthy individuals (and 23-fold; p = 0.0001). Our results demonstrate that aberrantly fucosylated uEVs and integrin ITGA3 can be detected with fucose-specific lectin UEA in a simple bioaffinity assay for the detection of BlCa directly from unprocessed urine.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda